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Abstract 
 

Autonomous Mobile Robot (AMR) has been widely used in exploration and navigation especially where static, 

dynamic and unknown environment is involved.  In this research, Enhanced D* Lite Algorithm is developed.  

The research is divided into two stages where the first stage is to develop a MATLAB simulation to verify the 

feasibility and the validity of the algorithm.    The second stage involves developing the proposed Enhanced D* 

Lite Algorithm, investigating and verifying this Enhanced D* Lite Algorithm in the real time implementation 

using Team AmigoBot
TM

.  The performances of the Enhanced D* Lite Algorithm in both simulation and real 

time implementation are investigated and evaluated on various aspects.  The results obtained from both 

simulation and real time implementation have proven the robustness and practicality of the Enhanced D* Lite 

Algorithm.  
 

Keywords:  Autonomous Mobile Robot (AMR), Mobile Robot, D* Algorithm, D* Lite Algorithn, Enhanced 

D* Lite Algorithm, Team AmigoBot
TM

 and MATLAB. 
 

1.  Introduction 
 

The development of technology has brought great conveniences to human beings.  Autonomous robotics plays 

a vital part in accomplishing useful tasks without human intervention in real world and unmodified 

environments that have not been specifically engineered for the robot (Saffiotti, 1997).  A variety field of study 

is inter-related with robotics.  They are such as Control, Vision, Mechanics, Electrical and Electronics (EE), 

Information Technology (IT) and Artificial Intelligence (AI) where Vision, Control and Artificial Intelligence 

(AI) are strongly related with mobile robot navigation.  The inter-relationship between robotics and other fields 

of study is shown in Figure 1 (Bräunl, 2003).  The successful use of an Autonomous Mobile Robot (AMR) 

(Hachour, 2008) is strongly related to its controller.  Most autonomous robots use sensors to correspond with 

the environment (Testler, 2009).   The controller of these autonomous robots acts according to the information 

received by the sensor.  Control of robotics systems has many challenging problems especially in unstructured 

environments.  The majority of robots operates in structured environments and performs simple repetitive tasks.   
 

However, operations in unstructured environments require robots to perform more complex tasks that may 

involve autonomous navigation, compliant motion, operational redundancy, fault tolerance, end-effector 

positioning, and flexing of links and joints.  These operations often have to be completed in dynamic, remote, 

hazardous or, in general, uncertain surroundings.  Humans cannot have exact and complete prior knowledge of 

these environments as many details are usually unknown, the position of people and objects cannot be predicted 

a priori, passageways may be blocked, and so on.  Furthermore, knowledge acquired through sensing is affected 

by uncertainty and imprecision.  The quality of sensor information is influenced by the sensor‟s noise, the 

limited field of view, the conditions of observation, and the inherent difficulty of the perceptual interpretation 

process.  Thus, major challenge of autonomous robotics is the large amounts of uncertainty that characterizes 

real world environments.  Current research in robotics aims to build an autonomous and intelligent robot which 

can plan its motion in a dynamic and uncertain environment. According to Testler (2009), robot is a   

programmable machine that imitates the action or appearance of an intellectual creature such as a human being 

or an animal.  This electro-mechanical device can perform autonomous or preprogrammed task. These 

autonomous or preprogrammed tasks can be any of the dangerous jobs, dirty jobs and boring jobs that human 

don‟t want to or don‟t feel like doing.   
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A number of software has been developed to control actions and movements of mobile robots to accomplish 

those preprogrammed or autonomous tasks.  All these software needs effective motion planning.  Motion 

planning is often designed to optimize specific performance criteria and to satisfy constraints on the robot‟s 

motion (Kam et al., 1997).  Typical performance criteria are minimum time to arrive at a milestone and 

minimum control effort.  Typical constraints in the motion planning are obstacle avoidance and maximum robot 

velocity.  But apparently, due to the lack of in-depth consideration from all aspects or the misunderstanding 

which occurs during the requirements capturing processes, some problems were found in these developed 

systems.  More and more problems have arisen in the development of the robots boasting.  Among them, the 

problem of getting the accurate and shortest path in the robot navigation is quite apparent in the development of 

robotics.  The robot navigation can be accomplished through behavior arbitration (Saffiotti, 1997) and 

hierarchical behavior control (Tunstel et al., 1997).  Some of these basic behaviors are Goal Seeking, Obstacle 

Avoidance and Wall Following.   
 

Mobile robot is one of the developed advanced technologies which assist humans in various purposes and tasks 

in many application fields such as education, service, industry, exploration, transportation, and more.   In 

exploration and observation field, robot is used to explore the environment that is new or not reachable by 

humans.  ROBOVOLC (Sim et al., 2003) is one of the examples of robots which designed for exploration and 

measurement in volcanic environment as it might be dangerous for volcanologist to do.  In industry application, 

mobile robot is mainly used for transporting the materials from one point to another.   It is known as Automated 

Guided Vehicle (AGV) (Garcia et al., 2007).  By using AGV in the industry, the cost can be minimized and 

efficiency can be increased. Mobile robot relies on sensors to get information about their surroundings (Testler, 

2009).  Normally, mobile robot is equipped with various types of sensors in order to guide the robot to achieve 

its purpose.  Some sensor appliances, image capturing devices or a combination of both sensing and image 

capturing devices can be treated as supporting appliances in robots navigation.  These appliances capture image 

data from these devices and use vision algorithms for analysis of the terrain (Howard et al., 2001) or sensor 

fusion to translate different sensory inputs into reliable estimates and environmental models (Kam et al., 1997).   
 

These image data are utilized in order to get a better reading of obstacles‟ features such as the distance between 

the robot and obstacle, the size of the obstacle and so on.  Thus, location and type of sensors are essential 

aspects in the mobile robot navigation.  Choosing the right sensors for the robot and locating them on the robot 

effectively are important in getting the best performance of the robot.  The number of sensors installed on the 

robot also needs to be considered and this is to be as few as possible.  Navigation is one of the important 

purposes that uses mobile robot (Franz & Mallot, 2000).  Mobile robot navigation is the technique to guide the 

mobile robot moving from the starting position towards the desired goal, along a desired path or accomplishing 

the desired purposes where static, dynamic, known and unknown environment is involved (Velappa et al., 

2009a).  The environment of mobile robot navigation is distinguished by variable terrain, a set of distinct 

objects or certain objects such as obstacles, milestones, and landmarks (Kam et al., 1997) that may block the 

movement of the robot in reaching the desired destination or accomplishing the desired purposes.  The 

environment for navigation could be known or unknown with moving and static obstacles.   
 

The environment with static obstacles is called static environment meanwhile the environment with moving 

obstacles that causes the locations of the obstacles change with time is called dynamic environment.  Unknown 

environment is the environment where the locations of the obstacles are unknown to the mobile robot while 

known environment is the environment where the locations of the obstacles are known to the mobile robot 

before navigation is carried out.   One common requirement for the mobile robot, independent of the operating 

domain, is the capability of intelligent navigation.  Autonomous Mobile Robot (AMR) has to find the near 

optimal collision free path from the starting point to the desired goal.  Some of the mobile robot navigation 

purposes are such as navigation for exploring unknown planet (Fu et al., 2006; Eustice et al., 2008), navigation 

for military purpose (Alvarez et al., 2004; Kim & Eustice, 2009 ), goal directed navigation (Velappa et al., 

2009a; Velappa et al., 2009b; Velappa et al., 2009c) and path finding (Wang & Liu, 2004).    
 

For goal-directed navigation, a mobile robot has to move from the given starting position towards the goal 

position with the capability to avoid obstacles.  The mobile robot should also be able to traverse in both known 

and unknown environments.  Besides, time to traverse from starting point to goal point is also an important 

aspect emphasized by researches.  It is important for mobile robot to plan a shortest path from starting point to 

goal point.  Moreover, the mobile robot must be able to re-plan its path quickly if there is a new obstacle in front 

or nearby.  Some of the existing goal-direct navigation algorithms are such as A* Algorithm (Lester, 2009), D* 

Algorithm (Stentz, 1994; Ferguson & Stentz, 2006; Choset et al., 2007), and D* Lite Algorithm (Koenig & 

Likhachev, 2002; Likhachev & Koenig, 2002; Koenig & Likhachev, 2005).   
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A* Algorithm (Lester, 2009) is an early developed popular graph search algorithm which finds the shortest path 

from a given initial start node to the goal node.  A* Algorithm uses distance plus path cost function to determine 

the shortest path to the goal node.  In A* Algorithm, node or square notation is used rather than coordinate 

because a map is divided into small grids or squares and nodes represent the center point of each grid D* 

Algorithm, which is also known as Stentz algorithm or Dynamic A* Algorithm, is developed by Anthony Stentz 

in 1994.  It is better than A* Algorithm because it could be used in partially or completely unknown and also 

dynamic environment. Dynamic environment means there might contain moving obstacles.  A* Algorithm is a 

simple algorithm which could be only used in static environment.  But D* Algorithm is able to repair or update 

the map of the dynamic environment and it can re-plan quickly whenever it detects there is a new obstacle or an 

obstacle is removed on the way to goal node (Stentz, 1994).  
 

D* Lite Algorithm (Koenig & Likhachev, 2002; Likhachev & Koenig, 2002; Koenig & Likhachev, 2005) is one 

of most popular goal-directed navigation algorithm that is widely used for mobile robot navigation in unknown 

environment.   D* Lite Algorithm is a reverse or backward searching method and it is able to re-plan from 

current position when there is a new obstacle blocking the path.   It determines the same paths as D* Algorithm 

and moves the mobile robot the same way but it is algorithmically different from D* Algorithm.  D* Lite 

Algorithm is developed by Koenig and Likhachev (Koenig & Likhachev, 2002; Likhachev & Koenig, 2002; 

Koenig & Likhachev, 2005) based on Lifelong Planning A* (Koenig et al., 2004) Algorithm in 2002.  It has 

been widely used for mobile robot navigation in unknown environment.  Similarly, it divides the environment 

into grids and path finding and robot‟s movement are from grid to grid.  
 

From the study and review of existing D* Lite Algorithm, the main problems of the algorithm are mobile robot 

is traversing across obstacles‟ sharp corners, traversing in between two obstacles, and trapped in the 

„U-Shaped‟ type obstacles. Also there is no real time implementation reported. To overcome the mentioned 

problems, Enhanced D* Lite Algorithm has been implemented.  In this research, the existing D* Lite Algorithm 

is investigated in detail and enhancements are emphasized on (i) preventing mobile robot from traversing across 

obstacles‟ sharp corners, (ii) avoiding complicated obstacles such as U-shaped obstacles, or obstacles that trap 

the mobile robot from moving, (iii) preventing mobile robot from traversing in between two obstacles, (iv) 

creating virtual wall if necessary, and (v) removing unnecessary pathways to yield shortest path.  The 

performances of the Enhanced D* Lite Algorithm in both simulation and real time implementation are 

investigated and evaluated on various aspects including (i) the ability to avoid obstacles (ii) finding a shortest 

path from goal to start position in dynamic environment (back propagation method), (iii) remembering the path, 

and (iv) following back the same path and returning to the goal position. 

2.  System Overview 
Consider a mobile robot navigation task in an environment with „U-shaped‟ type obstacles as shown in Figure 2, 

where no information about the obstacles positions is provided to the mobile robot.  It has to find a shortest path 

from the goal position towards starting position (back propagation).  It will compute a shortest path from its 

current position with respect to the starting position until it reaches starting position.   In this research, the 

mobile robot environment is represented by grids (Michalewicz, 1994).  White grids are known to be 

traversable, black grids are known to be obstacles, which are untraversable and round dot representing mobile 

robot. Referring to Figure 2, the mobile robot will traverse vertically up towards the starting position since that 

is the shortest path to reach starting position from goal position and it assumes all grids are traversable.  As the 

mobile robot is traversing vertically towards starting position, it is trapped in the „U-shaped‟ type obstacles as 

shown in Figure 2B.  Eventually the sensors of the mobile robot will detect and realize that there is an obstacle 

blocking in front of the mobile robot.   
 

The mobile robot will continue to search for other grids and check if there is a new path to reach starting 

position.  The only traversable grid now is the grid behind the mobile robot which means the mobile robot has to 

traverse out from the „U-shaped‟ type obstacles.  As the mobile robot traverses out from the „U-shaped‟ type 

obstacles, virtual walls will be created to make sure the same grids would not be traversed again.  This is shown 

in Figure 2C and Figure 2D.  The mobile robot is able to escape out from the „U-shaped‟ type obstacles and 

continue to find the shortest path in order to reach starting position.  Referring to Figure 2D, as the mobile robot 

traverses across obstacle‟s sharp corner, a minimum clearance distance is provided between obstacle‟s sharp 

corner and mobile robot.  This is important to prevent any damages of mobile robot.  Finally, the mobile robot is 

able to reach starting position as shown in Figure 2E.   Once the mobile robot has reached the starting position, 

it will follow back the path found just now and return to goal position as illustrated in Figure 2F and Figure 2G.  

No more path finding is required.  For the shortest path found travelling from goal to starting position, if there 

are unnecessary pathways, it would be removed as shown in Figure 2H.  This is the navigation strategy of 

Enhanced D* Lite Algorithm. 
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3.  Enhanced D* Lite Algorithm  
 

Basically, the path finding principle of Enhanced D* Lite Algorithm is the same as existing D* Lite Algorithm.  

However, Enhanced D* Lite Algorithm has been implemented with five additional features which are 

mentioned in Section 1.  Coordinate specification used to represent positions in Enhanced D* Lite Algorithm is 

(i, j) where i is the row and j is the column. Enhanced D* Lite Algorithm is using back propagation searching 

method as in D* Lite Algorithm to find the shortest path.  Back propagation searching method is where the path 

finding search will start from goal position towards starting position.  Details of how the Enhanced D* Lite 

Algorithm works would be explained in the following steps.  

(i)   Calculate h (Heuristic) value 

The first step of the Enhanced D* Lite Algorithm is to calculate the h (heuristic) value.  Starting position 

is assigned with an h value of 0.  The h value is incremented by 1 from grid to grid until all grids are 

assigned with the respective h values as seen in Figure 3.  Increment of h value is done vertically, 

horizontally, and diagonally with the condition that the smallest h value is taken from the starting position 

to the goal position. 

(ii)   Calculate rhs (Look Ahead Function) and g (Cost Function) values 

Initially, each grid of the environment is assigned with g and rhs values to infinity.  rhs(i, j) is a look 

ahead function.  rhs values will be re-calculated when the grids are analyzed.  Formula of the rhs is shown 

below. 

1)])(,(min[),(  gjisuccjirhs      (1) 

successorsjirhsofvaluesggwhere ),(  

g(i, j) is cost function and g value will be re-calculated when the grid is expanded.  The formula of g is 

shown below. 

),(),( jirhsjig              (2) 

(iii)   Calculate k1 and k2 (Priority Queue Function) values 

Basically, k1 and k2 are priority queue functions.  k1 and k2 values would be calculated when the grid(s) 

is/are analyzed by mobile robot.  Grid with the smallest k1 value will be expanded.  Formula for 

calculating k1 and k2 are shown below. 

),(),(),(1 jihjirhsjik           (3) 

 )],(),,(min[),(2 jirhsjigjik           (4)  

Path finding will stop when k1 value is equal to k2 value.  This indicates that the mobile robot has reached 

the starting position.  

(iv) Initialization 

After defining all the variables and their respective functions in Enhanced D* Lite Algorithm, 

initialization is to be performed before path finding starts. First, rhs value of goal position is set to value 

of 0, k1 and k2 values of goal position are calculated and g value of goal position is set equal to rhs value 

of goal position.  

(v)  Compute Shortest Path 

Next, the surrounding grids will be analyzed using sonar sensors.  This is to confirm if the grid is free of 

obstacles and could be traversed.  In this research, the mobile robot, Team AmigoBot
TM

 (MobileRobots, 

2007), is used.  Team AmigoBot
TM

 comes with eight built-in sonar sensors.  The structure of the Team 

AmigoBot
TM

 is shown in Figure 4.  
 

Referring to Figure 4, s1 to s6 are the front sensors and s7 and s8 are the rear sensors.  The angles of all the 

mounted sensors are shown in Figure 5.  Positive angle is to the left and negative angle is to the right.  Array S 

is used to store the sonar sensors‟ readings obtained from the environment.  S is represented mathematically as 

below: 

]87654321[ ssssssssS          (5) 

where s1- s8 are eight sensor readings indicating the configurations of the nearest obstacles to the mobile robot 

from the current position.  Figure 6 shows the position of the mobile robot for grid analysis.  Basically, there are 

eight grids surrounding the mobile robot labeled grid A to grid H.  Selection procedures of the grid(s) to be 

updated with new rhs, k1 and k2 values are shown in the flowchart in Figure 7.  The grid(s) updated with the 

new values would be the potential next grid to be expanded. Referring to the flowchart in Figure 7, for each of 

the eight grids surrounding the mobile robot, this Enhanced D* Lite Algorithm will start with the verification if 

the particular grid is free of obstacle by analyzing the sonar sensors readings.  If the grid is not free of obstacle, 

it will be checked for second condition, whether the grid is already a virtual wall.  If the grid is not a virtual wall, 

it will be checked for third condition, whether the grid is already in the closed list.   
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If the grid is not in the closed list, it will be checked again for fourth condition, whether grid B is surrounded by 

obstacles at grid A and grid C, grid D is surrounded by obstacles at grid C and grid E, grid F is surrounded by 

obstacles at grid E and grid G, and grid H is surrounded by obstacles at grid G and grid A.  This condition is used 

to prevent mobile robot from traversing in between two obstacles.  If this condition is not satisfied, then the 

grid‟s information will be updated.  This updated information is the next step to be travelled.  The fourth 

condition is used to prevent the mobile robot from traversing in between two obstacles.  Referring to Figure 8 as 

an example, although traversing from grid (4, 2) to grid (3, 3) would give shorter path from the goal position to 

reach starting position, but this action is prevented.  The shaded text boxes in the flowchart in Figure 7 are the 

proposed enhancements. 

(vi)  Store and update grid information 

 Referring to the flowchart in Figure 7, if any of the eight grids does not satisfy all the four conditions, the 

grid would be updated with new rhs, k1 and k2 values.  If any of the four conditions is met, the next grid 

would be analyzed till all the eight grids are exhausted.  

(vii)  Priority queue 

 After analyzing all the eight grids, the updated grid(s) with the smallest k1 value would be selected where 

U is given by: 

               )1min(kU                 (6) 

 Then, a grid in the selected list with minimum distance with respect to starting position would be selected 

and this will be the next grid to be expanded, (i, j).  

(viii) Traversing to the grid to be expanded 

 Before mobile robot traversing to the grid to be expanded, few more conditions need to be checked.   

Firstly, g(i, j) value of the grid to be expanded is set to its rhs(i, j) value.  Secondly, the grid will be 

checked whether it has been traversed twice.  If yes, a virtual wall would be created for the previously 

traversed grid and the grid to be expanded would be stored in the closed list.  This is to make sure that the 

previously traversed grid would not be traversed again and the grid in the closed list would not be 

analyzed again.  Follow by the verification of next condition.  This condition is to determine if the grid to 

be expanded is a diagonal grid with an obstacle on its left, right, top, or bottom.  If the condition is 

satisfied, the mobile robot will traverse to the grid to be expanded with a minimum clearance distance 

between mobile robot and obstacles which is shown in Figure 10.  Otherwise, the mobile robot will 

directly traverse to the grid to be expanded.  Better illustration of this step is shown in the flowchart in 

Figure 9.  If the grid to be expanded is free of obstacles, list of traversing actions are illustrated in Figure 

11 (1 to 6).  If the grid to be expanded is a diagonal grid with an obstacle on its left, right, top, or bottom, 

list of traversing actions are illustrated in Figure 12 (7 to 14). 

(ix)  Return to goal position 

 After finding the shortest path, the mobile robot will return to the goal position. Basically, no more 

searching is required, PathRemembering function will be executed.  If there are unnecessary pathways, it 

will be removed while the mobile robot returns.  This is illustrated in  

Figure 13.  If there are additional obstacles blocking the returning path, step 5 to step 8 will be repeated to find 

the new shortest path.  Thus, the current position will be assigned as new goal position and the original 

goal position will be assigned as new starting position.  
 

The complete flowchart of Enhanced D* Lite Algorithm back propagation searching method from goal position 

towards starting position is shown in  

Figure 14.  For returning path, mobile robot returns to the goal position by following the shortest path grids 

found.  The movement of the mobile robot would still be from grid to grid for further analysis if there is any new 

obstacle blocking the shortest path found.  Figure 15 illustrates the detailed flowchart of Enhanced D* Lite 

Algorithm back propagation returning method from the starting position to the goal position.  The research is 

divided into two stages where the first stage is to create and enhance the existing D* Lite Algorithm using 

MATLAB programming to develop a MATLAB simulation to verify feasibility and validity of the algorithm.  

The second stage involves developing the Enhanced D* Lite Algorithm by incorporating Team AmigoBot
TM

, 

investigating and verifying this Enhanced D* Lite Algorithm in the real time implementation using Team 

AmigoBot
TM

.  The details of MATLAB simulation and real time implementation are discussed in Section 4. 
 

4.  Results and Discussions 
4.1  MATLAB Simulation  
 

Basically, MATLAB simulation is created to confirm the feasibility of the Enhanced D* Lite Algorithm.  In 

MATLAB simulation, each grid is represented as one unit square.  Instead of using sonar sensor readings to 

identify obstacles, the position of the obstacles are either randomly generated or user defined.   
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Simulation test, named Test-1, is established according to the specification in Table 1.  The simulated 

environment as shown in  

Figure 16 is generated from the details shown in Table 1.   The goal is located on the right bottommost grid and 

the starting point is located on the left upmost grid.  The simulated mobile robot is expected to find a collision 

free path from the goal position towards starting position through back propagation searching method.  After 

identifying the collision free path, unnecessary paths are removed.  The simulated mobile robot is expected not 

to travel to grid that falls in the unnecessary pathway and return from the starting position to the goal position in 

a shortest collision free path.    
 

In Test-1, other than looking into the travelling activity of the simulated mobile robot from goal position to the 

start position, we have looked into the circumstances where (a) additional obstacles are not included; (b) 

additional obstacles are included in the returning path from starting position to the goal position.   

Figure 17 illustrates the travelling path from goal position to the starting position of Test-1.  Returning path 

from the starting position to the goal position without additional obstacles in Test-1a is shown in Figure 18 

while returning path from the starting position to the goal position with additional obstacles in Test-1b is shown 

in Figure 19.   
 

Result of Test-1: Travelling from goal to start position 
 

Referring to the result of Test-1 as in  

Figure 17, mobile robot had travelled from the goal position to the starting position (back propagation), a 

minimum clearance distance was provided between obstacles‟ sharp corners and virtual walls were created so 

that the same grids would not be traversed or analyzed again.  Moreover, mobile robot was able to move away 

from „U-shaped‟ type obstacles and it did not traverse in between two obstacles. Trace line (without considering 

the trace line covered with virtual walls) is the shortest path found by travelling from goal to starting position. 
 

 

Result of Test-1a: Returning from starting position to goal position WITHOUT additional obstacles  
 

Referring to Figure 18, it shows the result obtained by Test-1a, the mobile robot returning from starting position 

to goal position without additional obstacles.  For returning path without additional obstacles blocking the 

initial shortest path found, PathRemembering function was executed to direct the mobile robot back to the goal 

position through grid by grid movement and no more path searching was required.  In order to avoid any 

unexpected additional obstacles, before mobile robot is directed by PathRemembering remember function 

travelling to the next grid, the Enhanced D* Lite Algorithm will identify if the next grid is blocked with 

additional obstacles.  Unnecessary pathways were removed in order to enable the mobile robot returning from 

goal position to starting position in the shortest collision free path.  The returning path from the starting position 

to the goal position with no additional obstacles is shown in Figure 18. 
 

Result of Test-1b: Returning from starting position to goal position WITH additional obstacles  

The result of mobile robot returning from starting position to goal position with additional obstacles as in 

Test-1b is shown in the Figure 19.  While the mobile robot was directed by PathRemembering function to the 

next grid, it detected that there was an obstacle, immediately the current position of the mobile robot became 

goal position and the original goal position became starting position. Then ComputeShortestPath function was 

executed again to find the shortest path from the new goal position to the new starting position through back 

propagation searching method. From Test-1, all the five additional features of Enhanced D* Lite Algorithm 

were successfully implemented in the simulation where Enhanced D* Lite Algorithm is capable in (i) 

preventing mobile robot from traversing across obstacles‟ sharp corners, (ii) avoiding complicated obstacles, 

(iii) preventing mobile robot from traversing in between two obstacles, (iv) creating virtual wall if necessary, 

and (v) removing unnecessary pathways to yield shortest path.  Figure 20 uses the returning path from starting 

position to goal position with no additional obstacles in Test-1 to further illustrates the five additional features 

of Enhanced D* Lite Algorithm on top of the existing D* Lite Algorithm.  In short, MATLAB simulation has 

verified and has validated the effectiveness of the Enhanced D* Lite Algorithm. 

4.2  Real Time Implementation 

The Enhanced D* Lite Algorithm is implemented on real life situation using Team AmigoBot
TM

 

(MobileRobots, 2007) and the performance is observed.   In real life situation, an environment might consist of 

obstacles, and the locations of the obstacles are unknown for the mobile robot.  Moreover, the obstacles might 

move around from time to time.  This indicates that the sonar sensors of the Team AmigoBot
TM

 play an 

important role in detecting obstacles.  Team AmigoBot
TM

 is manufactured by MOBILEROBOTS Inc. is 

suitable to be used for this research due to its reasonable size, weight, and TCP/IP wireless control.  Moreover, 

the surrounding body of Team AmigoBot
TM

 is equipped with eight sonar sensors.  Team AmigoBot
TM

 is the 

smallest member of the Pioneer family mobile robot produced by MOBILEROBOTS Inc.  Team AmigoBot
TM
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can be operated in one of the three available modes: server, maintenance and standalone modes.    Figure 21 

shows the top view, side view and bottom view of Team AmigoBot
TM

  (MobileRobots, 2007).   
 

The standard AmigoBot comes with eight range-finding sonars: one on each side, four forward facing and two 

in the rear for 360-degree sensing coverage.  Other than that, the Team AmogoBot
TM

 is equipped with two shaft 

encoders to track (x, y) and theta position.  Besides, the ability to communicate via TCP/IP wireless connection 

is most suitable in this path planning related project. In real time implementation, the dimensions of the 

environment are in millimeters (mm), and coordinate specification are in (x,y).  The working environment for 

real time implementation of the Enhanced D* Lite Algorithm is a 2500 mm by 2500 mm area.  Within the 

environment area, there are 10 round-shaped type obstacles randomly arranged.  For the comparison purpose, 

the positions of the 10 round-shaped type obstacles are defined by the user.  The actual working environment 

constructed for the real time implementation is shown in Figure 22(a).  The mobile robot is expected to find a 

collision free path from the goal position towards starting position through back propagation searching method.   
 

After identifying the collision free path, unnecessary path is removed.  The mobile robot is expected not to 

travel to grid that lies in the unnecessary pathway and return from the starting position to the goal position in a 

shortest collision free path.   A representation environment is also created using MATLAB to illustrate the real 

time path taken by the mobile robot.  This representation environment will show the movement of the real 

mobile robot during path finding in real time and at the same time shortest path trace line will be plotted.  The 

trace line is later compared with the shortest path trace line from the MATLAB simulation.  The representation 

environment is scaled to 100:1 from to the actual environment.  The two dimensional top view of the 

representation environment is shown in Figure 22(b).  The starting position is represented by the circle on the 

top location, goal position is represented by circle on the bottom location, mobile robot is represented by round 

shaped object and all of the obstacles are represented by solid black „Round-Shaped‟ boxes.  In this research, 

the starting position is (1450mm, 2150mm) and the goal position is the coordinate (1450 mm, 250 mm).   
 

The above real time implementation, named Test-2, can be summarized as in Tables 2 and 3.  Two tests have 

been carried out and the comparison of shortest path obtained in real time implementation and MATLAB 

simulation is presented below.  In Test-2, other than looking into the travelling activity of the mobile robot from 

goal position to the start position, we have looked into the circumstances where additional obstacles are (a) not 

included and (b) included in the returning path from starting position to the goal position.  Real time 

representation of the returning path from the starting position to the goal position without additional obstacles 

carried out in Test-2a is shown in Figure 23(a) and the real time representation of the returning path from the 

starting position to the goal position with additional obstacles done in Test-2b is shown in Figure 24(a).   
 

Result of Test-2a: Returning from starting position to goal position WITHOUT additional obstacles  
 

Referring to the results of Test-2a in Figure 23, the same path pattern was obtained for both real time 

implementation and MATLAB simulation.  No additional obstacles were added for the returning path when the 

mobile robot returned to the goal position in Test-2a.  The trace lines as seen in Figure 23 were the shortest path 

found from the returning path from the starting position to the goal position with no additional obstacles in both 

real time implementation and MATLAB simulation.   
 

Result of Test-2b: Returning from starting position to goal position WITH additional obstacles  
 

Referring to the results of Test-2b, the same path pattern was obtained for both real time implementation and 

MATLAB simulation.  For Test-2b, two additional obstacles were added for the returning path to block the 

initial found shortest path.  Thus, when the sonar sensors of the mobile robot detected additional obstacles 

blocking the returning path, immediately ComputeShortestPath function was executed to find the shortest path 

again from the current position.  The current position was set to become new goal position and the original goal 

position was set to become new starting position (back propagation). Thus, the trace line as seen in Figure 24 

above new goal position were the initial shortest path found and the trace lines below new goal position were 

the new shortest path found from the new goal position to the new starting position (back propagation) in both 

real time implementation and MATLAB simulation.  In overall, real time implementation has confirmed the 

practicality and robustness of the Enhanced D* Lite Algorithm.  Some findings from the real time 

implementations were that the sensors readings were found to be fluctuating, and sometimes inaccurate and 

inconsistent.  Thus, a „settling time‟ was allowed to ensure that the sensors readings were stabilized before 

being captured and analyzed.  After allowing a small settling time, the sonar sensors readings were found to be 

more consistent when estimating the obstacle distances.   
 

5.  Conclusions 
 

In this research, the following features of the proposed Enhanced D* Lite Algorithm have been verified and 

proven with MATLAB simulation and real time implementation: (i) preventing mobile robot from traversing 
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across obstacles‟ sharp corners, (ii) avoiding complicated obstacles, (iii) preventing mobile robot from 

traversing in between two obstacles, (iv) creating virtual wall if necessary, and  
 

(v) removing unnecessary pathways to yield shortest path.  This investigated Enhanced D* Lite Algorithm is 

flexible to enable the mobile robot to reach start position from an arbitrary goal position.  The mobile robot is 

capable of escaping from complicated obstacles such as U-shaped obstacles, or obstacles that trap the mobile 

robot from moving.   Besides, directly traversing across obstacles‟ sharp corners and moving in between two 

obstacles are prohibited, since there might be a chance the mobile robot would collide with obstacles.   Virtual 

walls are created to avoid the same position being traversed over and over again.  Unnecessary pathways are 

removed in order to yield the shortest path from the starting position to the desired goal position.  In the event of 

new obstacle(s) blocking the path from the starting position to the goal position, Enhanced D* Lite Algorithm is 

capable of re-planning quickly and the mobile robot is able to return to the goal position by finding a shortest 

path again from its current position to the goal position.  Real time implementation of the Enhanced D* Lite 

Algorithm was investigated in detail. The results obtained from real time implementation are compared with the 

MATLAB simulation to verify the practicality and robustness of the proposed algorithm.  It is proven that the 

Enhanced D* Lite Algorithm is capable of (i) avoiding obstacles (ii) finding a shortest path from goal to start 

position in dynamic environment (back propagation method), (iii) remembering the path, and finally (iv) 

following back the same path and returning to the goal position. 

 

Figure 1: Fields Related to Robotics (Bräunl, 2003)   
 

 

 
Figure 2: Illustration of the Navigation Strategy 

 

 
Figure 3: Calculate h (Heuristic) Value 
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Figure 4: Top View of Team AmigoBot

TM
 with Sensors Labeling (MobileRobots, 2007) 

 

 
Figure 5: Top View of Team AmigoBot

TM
 with Mounted Angles of Sensors (MobileRobots, 2007) 

 

 
Figure 6: Grids A to H Surrounding the Team AmigoBot

TM
 

 

 
Figure 7: Flowchart Used to Determine which Grid is to be Updated with New rhs, k1 and k2 Values 

 
Figure 8: Prevention from Traversing in between Two Obstacles 
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Goal Position 
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Figure 9: Flowchart Used to Determine which Traversing Action is to be Taken and Virtual Wall(s) is(are) Created when 

Necessary 

 

 

 
Figure 10: Minimum Clearance Distance is provided between Obstacles‟ Sharp Corners and Mobile Robot 

 

 

 
Figure 11: List of Traversing Actions if the Grid to be expanded is Free of Obstacles 

 

 

 

        
Figure 12: List of Traversing Actions if the Grid to be expanded is a Diagonal Grid with an Obstacle on its Left, Right, Top, 

or Bottom 
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Figure 13: Virtual Walls are Created and Unnecessary Pathways are Removed 
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Figure 14: Complete Flowchart of Enhanced D* Lite Algorithm Back Propagation Searching Method from Goal Position 

Towards Starting Position  
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Figure 15: Detailed Flowchart of Enhanced D* Lite Algorithm Back Propagation Returning Method from Starting Position 

to the Goal Position 
 

 

 

 
 

Figure 16: Simulated Environment for Test-1 
 

 

 
 

Figure 17: Travelling from Goal to Starting Position 
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Figure 18: Returning from Starting to Goal Position without Additional Obstacles 

 

 

 

 
Figure 19: Returning from Starting to Goal Position with Additional Obstacles 

 

 
Figure 20: Verification of Five Additional Features of Enhanced D* Lite Algorithm through the  

Returning Path from Starting Position to Goal Position without Additional Obstacles of Test-1 

 
Figure 21: Top, Side and Bottom View of Team AmigoBot

TM
 (MobileRobots, 2007) 
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(a) (b) 

Figure 22: (a) Actual Environment (2500 mm x 2500 mm); (b) Representation Environment Created for Real Time 

Implementation 
 

 

 

 

  

 
(a) (b) 

Figure 23: Result of Test-2a (a) Real Time Implementation Representation Environment; (b) MATLAB Simulation 

Environment 
 

 

 

  

 
 

(a) (b) 

Figure 24: Result of Test-2b (a) Real Time Implementation Representation Environment; (b) MATLAB Simulation 

Environment 
 

Environment size 10 x 10 

Starting position 1,1 

Goal position 10,10 

Obstacles 34 obstacles positions defined by user 

Additional Obstacles added for returning path 
Initially no, when Test-1 repeated, additional obstacles 

for returning path are added. 

Table 1: Input Parameters of Test-1 
 

Environment size 2500 x 2500  

Starting position 1450,2150 

Goal position 1450,250 

Obstacles 10. Positions defined by user 

Additional Obstacles added for returning path NO. 

Table 2: Input Parameters of Test-2a (Numbers in the Second Column are in mm) 
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Environment size 2500 x 2500  

Starting position 1450,2150 

Goal position 1450,250 

Obstacles 10. Positions defined by user 

Additional Obstacles added for returning path YES. (1050, 1350) (1250, 1250) 
 

Table 3: Input Parameters of Test-2b (Numbers in the Second Column are in mm) 
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