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Abstract 

A Variable Structure Controller  (VSC)  is designed for the purpose of stabilizing a Time Delay System (TDS). The 
considered system is  delay-dependent stable. The system remains stable as delay is increased from zero to a maximum 

value at which stability is then lost. Using a memoryless stabilization feedback, a sliding surface is constructed  
through a Lyapunov-Krasovskii scheme so that stability is guaranteed during sliding motion. Once the VSC is applied, 

simulated results are given and it is shown that sliding mode is achieved for any feasible value of  the delay and  initial 

conditions.  

Key Words : Delay dependent Stability, Delay  independent Stability, Lyapunov-Krasovskii  Functional, Sliding 

Surface, Riccati Equation, Time Delay Systems, Variable Structure Controller. 

1. Introduction 

The issue of  Variable Structure Control (VSC) of a Linear Time Invariant System (LTI) with a single constant delay in  

the states,  is the focus of this work.The existence of delay in  most systems is  a source of instability and makes system 

analysis  and control design more complicated. Often, delay is a source of poor performances.  

Such a controller has the intrinsic feature of insensitivity to external disturbances (disturbance rejection property) and  

to plant parameter uncertainties (robustness property). In this approach, a sliding surface is constructed through a  

Lyapunov-Krasovskii approach. This is a natural extension of the classical Lyapunov theory in (Wu et al., 1996), to 

delayed systems.  
 

This paper is organized as follows. Introduction is Section 1. Section 2 reviews some milestones in the literature, as far 

as the application of the VSC to TDS is concerned. In Section 3,we recall some mathematical tools  and bring about  

the  Lyapunov-Krasovskii approach for delay-independent stability criterion. Section 4 is the description of the system,  

meanwhile  Section 5 tells about the VSC design methodology and the statement of  the existence conditions. The 

stability of the sliding mode motion is also addressed in section 5. Section 6 is for results: plots of the states and the 

control law are provided in the simulation. Finally, section 7  is conclusion. 
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2. Literature Review and Background  

Disturbance rejection property and robustness to plant parameter uncertainties, are the two main advantages  of   VSC 

over classical adaptive controllers.  These two features are widely reported in the literature  by  Drazenovic (1969), 

Zinober (1981), Young et al. (1996), Young et al. (1999) and  Utkin (1983) and many other authors. 
 

Since  the  early 1990s, there has been an increasing interest to apply VSC to TDS. Consequently, that trends has led to 

a significant number of published papers. For the first time, Luo and De La Sen (1993) gave a satisfactory solution to 

the stabilization problem of  TDS through the use of VSC.  Shyu & Jun-Juh (1993), proposed an integral sliding surface 

design approach which is seen  as a  kind  of  constrained  VSC. A survey is given on the issue in (Steinberger, et 
al.,2020).There are significant advancements from Richard et al (2001), Gouaisbaut and Peaucelle (2006), Gouaisbaut 

et al.(2009) and most importantly from Jafarov (2009). These authors introduced the concept of matrix norms, Linear 

Matrix Inequalities (LMI) and Riccati Equation. Hung et al. (1993), mentioned the fact that the whole research field 

was yet  to be seriously investigated from that perspective. Koshkouei and Zinober (1996), were amongst the pioneers 

to  use VSC for the purpose of stabilization. In this regard, much breakthrough was made in (Jafarov,2011), where the 

definition of delay dependent and delay independent stability have been clarified and emphasized. These aspects are 

also well accounted for in (Sename,2013,2014), where the Lyapunov-Krasovskii and Lyapunov-Razhumikin  

approaches  are  well  described. The review by Keqin et al.(2003a) is one of the best on the issue. Kharitonov (1999) 

ponders on these concepts and approaches as well as on the characteristic equation and its roots.  From the same 

perspective, that is Lyapunov-Krasovskii functional, Emilia Fridman, in (Fridman,2014), addresses time-varying 

delays. In  (Wu et al., 1996), the issue of  constructing a sliding surface for  linear systems from a classical Lyapunov 

point of view is addressed. Such a design was successfully applied in (Rimbe et al., 2017) to a VSC  for a non-delayed 

ship. The purpose of this paper is to achieve a similar goal for a delayed ship model. More trends in  recent 

developments of VSS and VSC are highlighted in  (Steinberger, et al.,2019) and (Steinberger, et al.,2020). 
 

3. Preliminaries  and Mathematical Tools 
 

This  section reviews  some of the algebraic tools used in subsequent sections.  

Given any rectangular matrix  𝐴 = 𝐴𝑚𝑛 , (that is, a matrix with  m lines and n columns), one can always  get the 

singular value decomposition  (SVD)  of  𝐴  as     in     (1).   The  matrix  𝐴𝑇 = 𝐴𝑛𝑚
𝑇 ,  where the rows and columns of  

𝐴  are interchanged, is the transposed  of  𝐴. 

𝐴 = 𝑈𝐷𝑉𝑇                                                                                                                                                          …           (1) 

 where  𝑈,𝐷, 𝑉   are matrices with the appropriate dimensions   and  𝐷 is diagonal.  

𝐷 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, …𝜎𝑟)                                                                                                                                      …           (2) 

𝜎𝑖   (positive) are the singular values;   𝑖 = 1,2…𝑟 ≤ min 𝑚, 𝑛 .   

The spectral decomposition refers to the  eigenvalues, when  𝐴  is square (𝑚 = 𝑛) : 

𝐴𝑥 = 𝜆𝑥 = 𝑥𝜆                                                                                                                                                 …           (3) 

Writing this for each  eigenvector  𝑥 ∈ ℝ𝑛 , we have   𝐴𝐸 = 𝐸𝛬 ,  where 𝐸 is the  matrix formed by the eigenvectors 

and  𝛬 = 𝑑𝑖𝑎𝑑 𝜆1, 𝜆2, … 𝜆𝑟 .   Assuming  𝑟 = 𝑛 : 
𝐴 = 𝐸𝛬𝐸−1                                                                                                                                                        …           (4) 

If   𝐴 = 𝐴𝑇,   then the  square matrix  𝐴 = 𝐴𝑛𝑛    𝑖𝑠  said to be symmetric. If a matrix P  is  symmetric, the n  

eigenvalues are real. If all eigenvalues are positive, then the matrix  𝑃 is positive definite (𝑃 > 𝑂) . The eigenvectors 

corresponding to distinct eigenvalues of a symmetric matrix are orthogonal. For a symmetric positive definite  matrix  

𝑃 = 𝑃𝑇 > 𝑂  and  normalized (orthogonal) eigenvectors, where   𝐸 = 𝑈  and  𝑈−1 = 𝑈𝑇,  equation  (5)  holds. 

𝑃 = 𝑈𝛬𝑈𝑇                                                                                                                                                           …         (5) 

It is only in  this case,  𝑃 = 𝑃𝑇 > 𝑂, that the  two decompositions coincide  (𝐷 = 𝛬). 

𝑃 = 𝑈𝐷𝑈𝑇 = 𝐸𝛬𝐸−1                                                                                                                                          …         (6) 

3.1. Matrix Norm  

For any vector  𝑥(𝑡) ∈ ℝ𝑛 , if   𝑥 𝑡 ≠ 0  and  (𝑥𝑇𝐴𝑥) >0 , then  the square matrix 𝐴 is  said to be positive 

definite: 𝐴 > 𝑂. In other words,  (𝑥𝑇𝐴𝑥)>0 is equivalent  to  (𝐴 > 𝑂).    

Given two positive definite matrices  𝐴  and  ; it can be shown that  (𝐴 + 𝐵) is also positive definite.  If  𝐴 > 𝑂 

(positive definite) , then  −𝐴 < 𝑂 (negative definite).  

While  𝑥 =  𝑥𝑇𝑥    is the euclidian  norm of a vector  𝑥 = 𝑥 (𝑡)  ∈ ℝ𝑛 , the   matrix    norm    𝐴   of  a matrix  𝐴   is   

defined in  equation  (7).     
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 𝐴 =𝑚𝑎𝑥(
 𝐴𝑥 

 𝑥 =1
)= λ𝑚𝑎𝑥 (𝐴𝑇𝐴).                                                                                                           …               (7) 

 𝛼𝐴 =  𝛼  𝐴   ;  for any  α ∈ ℝ                          …            (8) 

 𝐴𝐵 ≤  𝐴  𝐵                                                                                                                                      …                (9) 

 For any  matrices  𝐴, 𝐵 and for any   𝑥 = 𝑥  𝑡 ∈ ℝ𝑛 , conditions (10), (11), (12) hold.     

 𝐴 + 𝐵 ≤  𝐴 +  𝐵   ( Schwarz  inequality)                                                                                      …              (10) 
 𝐴𝑥 ≤  𝐴  𝑥                                                                                                                                       …              (11) 

𝜅 (𝐴) =  𝐴  𝐴−1 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
≥ 1                                                                                                                …              (12) 

Here  𝜎 = singular value of  𝐴 and  𝜅 (𝐴) is the so called condition number of  A. 

𝜆𝑖(𝐴) ;  𝑖 = 1,… , 𝑛  are  eigenvalues  of  𝐴 ;  . i.e.  det 𝜆𝑖𝐼 − 𝐴 = 0.    

If  𝑃 = 𝑃𝑇 > 𝑂,  then    (13)  holds. 

 𝑃 = 𝜆𝑚𝑎𝑥 (𝑃) = the maximum eigenvalue of  P.                                                                                 …            (13) 

Rayleigh’s  quotient   is  𝑅 𝑥     in   (14)     for  any   vector   𝑥 ≠ 0 . 

𝑅 𝑥 =
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
=

𝑥𝑇𝐴𝑥

 𝑥 2                                                                                                                                   …              (14) 

𝑅 𝑥  = (
𝑥

 𝑥 
)𝑇𝐴 

𝑥

 𝑥 
 = 𝑣𝑇𝐴𝑣 ;    𝑣 =

𝑥

 𝑥 
 

Any  vector   𝑥  that minimizes 𝑅 𝑥  is an eigenvector :  𝐴𝑥 = 𝜆𝑥,   and  so  

𝜆 = 𝑅 𝑥 =
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
 =  for that eigenvector. We have  (15), (16), (17)  that hold. 

𝜆𝑚𝑖𝑛 (𝐴) ≤ 𝑅(𝑥) ≤ 𝜆𝑚𝑎𝑥 (𝐴)                                                                                                                     …              (15) 

𝑚𝑖𝑛𝑅(𝑥)=𝜆𝑚𝑖𝑛 (𝐴)                                                                                                                                    …               (16) 

𝑚𝑎𝑥 𝑅(𝑥) = 𝜆𝑚𝑎𝑥 (𝐴)                                                                                                                                …               (17) 

If  (𝑃𝑇 = 𝑃 > 𝑂) , then   condition ( 18)  holds. 

0 ≤ 𝜆𝑚𝑖𝑛 (𝑃) 𝑥 𝑡  2 ≤ 𝑥𝑇(𝑡)𝑃𝑥(𝑡) ≤ 𝜆𝑚𝑎𝑥 (𝑃) 𝑥 𝑡  2                                                                         …               (18) 

Condition   (18)    is the so called  Rayleigh’s principle for a positive definite matrix  𝑃. 

3.2.   Equivalent Statements for a Definite Matrix 
  

Given two positive definite matrices  𝐴 , 𝐵  ; it can be shown that  𝐴 + 𝐵 is also positive definite.  If  𝐴 > 𝑂 (positive 

definite) , then  −𝐴 < 𝑂 (negative definite).  

For any given square  matrix  𝐴 > 𝑂  of  size  𝑛, the following statements (i) to (vi),  are equivalent. 

(i). The    𝑛    pivots of  𝐴   are  strictly  positive (they are reals). 

(ii). The  𝑛  determinants  in  (19)  of  the main  diagonal of the matrix  𝐴  are positive. 

(iii).  The  𝑛  eigenvalues of   𝐴  are  strictly positive (they are reals). 

(iv).  For any vector 𝑥 = 𝑥(𝑡) ∈ ℝ𝑛   ,  if  𝑥 𝑡 ≠ 0 ;  we have  (𝑥𝑇𝐴𝑥) >0 . This definition, based on the energy 

(Lyapunov’s function) is fundamental in control systems. 

(v).  𝐴 = 𝑅𝑇𝑅  where  𝑅 has  its  columns linearly  independent. 

(vi).  The  Cholesky’s  decomposition  𝐴 = 𝐿𝐿𝑇  is  possible.  Here, L  is  a  lower triangular matrix. 
 

More on the issue of matrices to be found in  (Guerin et al.,2008,2020). 
 

 𝐴1 =  𝑎11 ;  𝐴2 =  
𝑎11 𝑎12

𝑎21 𝑎22
 ;  𝐴3 =  

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 ; … ;  𝐴𝑛  = 𝑑𝑒𝑡⁡(𝐴)                                        …           (19) 

3.3. Schur Complement 

Given the  block partitioned matrix  in  (20), the Schur complements are defined next. 

𝐴 =  
𝐴11 𝐴12

𝐴21 𝐴22
                                                                                                                                               …           (20) 

Assuming  𝐴 =  
𝐴11 𝐴12

𝐴21 𝐴22
 > 𝑂                                                                                                                    …           (21) 

The statement  in (21)  is equivalent   to    each   of  the conditions  in (22) and (23). 

(𝐴11 − 𝐴12𝐴22
−1𝐴21) > 0  and   𝐴11 > 0 if  𝑑𝑒𝑡 (𝐴22)  ≠ 𝑂                                                                         …           (22) 

(𝐴22 − 𝐴21𝐴11
−1𝐴12) > 0  and     𝐴22 > 0 if  𝑑𝑒𝑡( 𝐴11)  ≠ 𝑂                                                                       …           (23) 

The terms  (𝐴11 − 𝐴12𝐴22
−1𝐴21)  and (𝐴22 − 𝐴21𝐴11

−1𝐴12)   are   the  Schur complements. 
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4.  System Description 

In this section, a description of the delayed system is given. A single input system with a single fixed state-delay is 

considered in (24), (25) and (26). 

𝒙  𝑡 = 𝐴0𝒙 𝑡 + 𝐴1𝒙 𝑡 − 𝑕 + 𝐵𝑢 𝑡 ;  𝑡 > 0                                                                                              …            (24) 

𝒙(𝑡) =  𝑥1(𝑡) … 𝑥𝑛(𝑡) 𝑇 ;                                                                                                                        …            (25) 

𝒙 𝑡 = 𝝋 𝑡 ,   for   𝑡 𝜖  −𝑕 ;   0 ;                                                                                                                   …            (26) 

0 ≤ 𝑕 ≤ 𝑕1𝑚𝑎𝑥 ;  where  𝑕1𝑚𝑎𝑥  is a value of the delay at which  stability is lost. 

𝝋(𝑡) : (𝑛 × 1) is a known continuous vector valued initial state condition function;  

𝒙 𝑡 : (𝑛 × 1)is  the measurable state vector ; 

𝑢 𝑡 is the control input scalar, in this SISO (Single  Input / Single Output) system; 

𝐵 ∶   (𝑛 × 1) ;  is the  known constant  input matrix, with full rank ; 

𝑕  is the  constant scalar, always positive, time- delay;  

𝐴0 , 𝐴1 : (𝑛 × 𝑛)  ; are the  known constant  system  matrices . 

4.1. Delay Independent Lyapunov-Krasovsskii  Stability Approach 

It is assumed in this section that, the reader is familiar with the classical Lyapunov stability theory  for non delayed 

systems. The TDS described in (24) is said to be infinite dimensional, because its  characteristic polynomial  𝑃 𝑠  in 

(27), has an infinite  number of roots (Kharitonov,1999). The characteristic polynomial is the  denominator of the 

transfer function of a SISO  system. 

 𝑃 𝑠 =   det( 𝑠𝐼 − 𝐴0 − 𝐴1𝑒
−𝑠𝑕) = 0                                                                                                          ...             (27) 

When using the Lyapunov stability analysis, the infinite  dimensional nature  of the  system in (24)  requires a new 

approach as compared to the classical Lyapunov theory.  This idea is conceptualized in (Fridman,2014), (Sename,2013) 

and (Keqin et al., 2003a, 2003b). It is widely acknowledged that, the credit for the use of a functional instead of an 

ordinary classical Lyapunov function, goes to Krasovskii (1956). Hence the Lyapunov-Krasovskii approach. 

Consider the delayed  system  (24)  and  the Lyapunov-Krasovskii functional 𝑉  𝑥, 𝑡   in (28), where  matrices P , Q  

are symmetric  positive definite. 

𝑉( 𝑥, 𝑡) = 𝑥𝑇 𝑡 𝑃𝑥(𝑡) +  𝑥𝑇 𝑡 + 𝜃 𝑄𝑥 𝑡 + 𝜃 𝑑𝜃
0

−𝑕
                                                                             ...               (28) 

This functional is positive definite and hence  the conditions (i) and  (ii)  are satisfied. 

(i). 𝑉 𝑥, 𝑡 > 0  for all  𝑥 (𝑡) ∈ ℝ𝑛  and  for all  𝑡 ∈ ℝ. 

(ii). 𝑉 𝑥, 𝑡 = 0    if and only if  𝑥 = 0. 

Showing that   
𝑑𝑉

𝑑𝑡
= 𝑉  𝑥(𝑡 ) < 0 along the trajectories, is proof  that the system is  stable.   

𝑑𝑉

𝑑𝑡
= 𝑉  𝑥(𝑡 ) = 𝑥 𝑇 𝑡 𝑃𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃𝑥  𝑡 + 𝑥𝑇 𝑡 𝑄𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑄𝑥𝑇 𝑡 − 𝑕 =

[𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 – 𝑕 ]𝑇𝑃𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 – 𝑕  + 𝑥𝑇 𝑡 𝑄𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑄𝑥𝑇 𝑡 − 𝑕 =[𝑥𝑇 𝑡 𝐴0
𝑇 +

𝑥𝑇 𝑡 − 𝑕 𝐴1
𝑇] 𝑃𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 – 𝑕  + 𝑥𝑇 𝑡 𝑄𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑄𝑥𝑇 𝑡 − 𝑕 =[𝑥𝑇 𝑡 𝐴0

𝑇𝑃𝑥 𝑡 +

𝑥𝑇 𝑡 − 𝑕 𝐴1
𝑇  𝑃𝑥 𝑡 ] +𝑥𝑇 𝑡 𝑃𝐴0𝑥 𝑡 + 𝑥𝑇 𝑡 𝑃𝐴1𝑥 𝑡 – 𝑕 + 𝑥𝑇 𝑡 𝑄𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑄𝑥𝑇 𝑡 − 𝑕  

=  

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 

𝑇

 
𝑃𝐴0 + 𝐴0

𝑇𝑃 + 𝑄 𝑃𝐴1

𝐴1
𝑇𝑃 −𝑄

  

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 < 𝑂 

The  system  is asymptotically stable for any delay if there exist  positive  symmetric matrices   𝑃 = 𝑃𝑇 > 𝑂  and  

𝑄 = 𝑄𝑇 > 𝑂, such   that    condition  (29)  is satisfied. 

 
𝑃𝐴0 + 𝐴0

𝑇𝑃 + 𝑄 𝑃𝐴1

𝐴1
𝑇𝑃 −𝑄

 < 𝑂                                                                                                                    …            (29) 

 

The result in  (29)  can be found in (Sename, 2013,2014), Keqin et al.(2003),  and is referred to as the delay-

independent stability criterion.  
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5. Variable Structure Controller Design Methodology 

The objective is to design a sliding mode controller that stabilizes the  system  in (24). As recalled by Jafarov (2009), a 

primary objective in the design of any control system is to maintain stability and performance level in system dynamics 

and in the working environment to a certain desired degree. Here, delay-independent sufficient conditions will be  

given for the existence of a sliding mode and the asymptotic stability of the closed-loop system.  The design of any 

VSC  is  a two stage procedure. A first step is the design of the switching surface   𝑠 𝑥 =  0  to represent a desired 

system dynamics, which is of lower order than the given plant. The second step is the  design of the variable structure 

control law 𝑢(𝑥, 𝑡 ) such that any state 𝒙(t) outside the switching surface is driven to reach the surface in finite time 

from any arbitrary initial conditions.  

5.1. Sliding Surface Design  

A sliding  surface   𝐺   isconsideredin  (30).  

𝐺 =    𝑥  𝑔 =  𝑠 𝑥 =  𝑆𝑥 𝑡 = 0                                                                                                                  ...             (30) 

This surface  𝐺  is of  dimension (𝑛 − 1), and  𝑆  is a sliding surface matrix of full rank. 

It  is a normal vector to  𝐺. It is easily seen that  equation (31)  holds. 

𝑆 = 𝜵𝑻𝑔 = 𝑆 = 𝜵𝑻𝑠 𝒙                                                                                                                                  …            (31) 

𝑆 =  𝑆1 𝑆2    … 𝑆𝑛                                                                                                                                       ...             (32) 

It is shown in (Kwon and Pearson,1977) and in (Feliachi and Thowsen,1981), that  stabilization  of  the   system (24)  

can be achieved by  the  memoryless  feedback   𝑢𝑓 𝑥, 𝑡    in  (33)  where  𝐾 = 𝐵𝑇𝑃  and  𝑃 = 𝑃𝑇 > 𝑂 is the solution to  

the  Riccati equation      in   (34). 

𝑢𝑓 𝑥, 𝑡 = −𝐾𝑥 = −𝐵𝑇𝑃𝑥                                                                                                                             ...             (33) 

𝐴0𝑃 + 𝑃𝐴0
𝑇 − 𝑃𝐵𝑇𝐵𝑃 + 𝑄 = 0                                                                                                                    ...             (34) 

𝑄 = 𝑄𝑇 > 𝑂  is to be chosen so that the existence condition of the sliding motion is guaranteed. Based on that result 

and similarly to what has been done in (Young, et al., 1999), (Wu et al.,1996), and in (Rimbe, 2005) , (Rimbeet al., 

2017), the surface  matrix   𝑆  is selected as  in  (35). 

𝑆 = 𝐾 = 𝐵𝑇𝑃                                                                                                                                                …              (35) 

The switching function is defined  in (36)  and  the signum function   𝑠𝑖𝑔𝑛 𝑔  is in  (37)   and   (38). 

𝑔 = 𝑠 𝑥, 𝑡 = 𝑆𝑥 𝑡                                                                                                                                       …              (36) 

𝑠𝑖𝑔𝑛 𝑔 =  

1 𝑖𝑓 𝑔 = 𝑠(𝑥, 𝑡) > 0
0 𝑖𝑓 𝑔 = 𝑠(𝑥, 𝑡) = 0
−1 𝑖𝑓 𝑔 = 𝑠(𝑥, 𝑡) < 0

                                                                                                         ...              (37) 

𝑠𝑖𝑔𝑛 𝑔 =
𝑆𝑥

 𝑆𝑥 
 =

𝑔(𝑡)

 𝑔(𝑡) 
=

𝑠(𝑡)

 𝑠(𝑡) 
if  𝑠(𝑥, 𝑡) ≠ 0                                                                            …             (38) 

𝑠𝑖𝑔𝑛 𝑔 = 0 if   𝑠 𝑥, 𝑡 = 0 

5.2. The Control Law Design 

As in  (Jafarov,2009),  the following type of  VSC law in (39)  can be  considered to prove Theorem 1 and Lemma 1. 

𝑢 𝒙, 𝑡 = − 𝑘 𝑥   𝐵𝑇𝑃𝐵 −1 𝑠(𝑡)

 𝑠(𝑡) 
                                                                                                               …             (39) 

𝑘 >  0    is  a  design parameter and   𝑢 𝒙, 𝑡   is a control vector. 

However, from  (Drazenovic, 1969),  (Zinober, 1981) and  (Rimbe, 2005), (Rimbe et al.,2017), it is sufficient,  for a 

certain regulator without external disturbances,  to  use  the simplified control law in   (40). 

𝑢 𝑥, 𝑡 = −𝑘 𝑥1 
𝑠(𝑡)

 𝑠(𝑡) 
                                                                                                                                      …          (40) 

Notice that   𝑥1 ≤  𝑥  , and so the conditions  of    Lemma  1  and Theorem 1 are fulfilled. 

 

5.3. Sliding Mode Existence Conditions 

We have selected  the sliding surface matrix  in (31), (32), (35) and defined  the controller (39). The next step is now to 

choose the design parameter  𝑘 such that on the sliding surface, a sliding mode and the closed-loop system are  globally 

asymptotically stable. 
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Lemma 1:  (Jafarov,2009) :  

Given the time-delay system (24)  driven by  the controller (39), a stable sliding mode can always be generated on the  

surface  (31),(30), (32)  and (35) if the following conditions  (41), (42) and (43) are satisfied. 

There exist a matrix  𝑄𝑠 > 𝑂   and  a scalar 𝑘 > 0    such that: 

𝑃𝑠𝐴0 + 𝐴0
𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 − 2𝑘𝜔 < 𝑂  ;                                                                                                            …                 (41) 

Where  𝑃𝑠 = 𝑃𝐵𝐵𝑇𝑃 = 𝑃𝑠
𝑇 ≥ 0 ;  

𝑆 = 𝐵𝑇𝑃 ;  𝛽𝑣 > 0 ; 𝜔 =
1

 𝜆max (𝑃𝑠)
  is a given constant. 

𝑃𝑠𝐴0 + 𝐴0
𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 − 2𝑘𝜔 = −𝑄𝑠 < 𝑂;  

𝑃𝑠𝐴0 + 𝐴0
𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 − 2𝑘𝜔 + 𝑄𝑠 = 𝑂.                                                                                                        …              (42) 

𝐻𝑠 =  
𝑃𝑠𝐴0 + 𝐴0

𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 𝑃𝑠𝐴1

𝐴1
𝑇𝑃𝑠 −𝛽𝑣𝑃𝑠

 < 𝑂                                                                                               …              (43) 

 

Proof: 

A  Lyapunov-Krasovskii functional is considered as  𝑉(𝑠, 𝑡) ≥ 0: 

𝑉(𝑠, 𝑡) = 𝑠𝑇 𝑡 𝑠(𝑡) + 𝛽𝑣  𝑠𝑇 𝜃 𝑠 𝜃 𝑑𝜃
𝑡

𝑡−𝑕
.  𝛽𝑣 > 0. 

𝑠(𝑡) = 𝐵𝑇𝑃𝑥 = 𝑆𝑥and   so    𝑠  𝑡 = 𝑆𝑥 = 𝐵𝑇𝑃𝑥  ; 𝑃𝑠 = 𝑃𝐵𝐵𝑇𝑃 ≥ 𝑂. 

𝑠𝑇 𝑡 𝑠 𝑡 = 𝑥𝑇 𝑡  𝑃𝐵𝐵𝑇𝑃 𝑥 𝑡 = 𝑥𝑇 𝑡 𝑃𝑠𝑥 𝑡 =  𝑠(𝑡) 2 = 𝜆max  𝑃𝑠  𝑥(𝑡) 2. 

𝑠𝑇 𝑡 − 𝑕 𝑠 𝑡 − 𝑕 = 𝑥𝑇 𝑡 − 𝑕 𝑃𝑠𝑥 𝑡 − 𝑕 =  𝜆max  𝑃𝑠  𝑥(𝑡 − 𝑕) 2. 

𝑉  𝑠, 𝑡 =
𝑑𝑉

𝑑𝑡
= 𝑠 𝑇 𝑡 𝑠 𝑡 + 𝑠𝑇 𝑡 𝑠  𝑡 + 𝛽𝑣 𝑠

𝑇 𝑡 𝑠 𝑡 − 𝑠𝑇 𝑡 − 𝑕 𝑠 𝑡 − 𝑕  = 2𝑠𝑇 𝐵𝑇𝑃 𝑥 + 𝛽𝑣 𝑠
𝑇𝑠 − 𝑠𝑇 𝑡 −

𝑕𝑠𝑡−𝑕= 

2𝑠𝑇 𝐵𝑇𝑃  𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 − 𝑕 + 𝐵𝑢 𝑥, 𝑡  𝛽𝑣 𝑥
𝑇 𝑡 𝑃𝑠𝑥(𝑡) − 𝑥𝑇 𝑡 − 𝑕 𝑃𝑠𝑥(𝑡 − 𝑕) =𝑥𝑇 𝑡  𝑃𝑠𝐴0 + 𝐴0𝑃𝑠 +

𝛽𝑣𝑃𝑠𝑥𝑡−2𝑠𝑇𝑡𝐵𝑇𝑃𝐵𝐵𝑇𝑃𝐵−1𝑘𝑥𝑡+2𝑥𝑇𝑡(𝑃𝑠𝐴1)𝑥(𝑡−𝑕)−𝛽𝑣𝑥𝑇𝑡−𝑕(𝑃𝑠)𝑥(𝑡−𝑕) 
 

Note that        𝐵𝑇𝑃𝐵 𝐵𝑇𝑃𝐵 −1  = I.         In general,  𝜆min  𝑃𝑠 = 0 .  

Then  follows 

−2𝑠𝑇 𝑡  𝐵𝑇𝑃𝐵 𝐵𝑇𝑃𝐵 −1 𝑘 𝑥 𝑡  ≤ −2𝑘 𝑥 𝑡   𝑠 𝑡  .Using Schwarz inequality : 

 𝑠 𝑡  =  𝐵𝑇𝑃𝒙(𝑡) ≤  𝐵𝑇𝑃  𝑥(𝑡) = 𝜆max  𝑃𝑠  𝑥(𝑡)  

 𝑥 𝑡   𝑠 𝑡  ≥ 𝜔 𝑠 𝑡   𝑠 𝑡  = 𝜔 𝑠 𝑡  2 = 𝜔𝑠𝑇 𝑡 𝑠 𝑡  

𝜔 =
1

 𝜆max  𝑃𝑠 
   and    𝑥 𝑡  ≥

1

 𝜆max  𝑃𝑠 
 𝑠 𝑡  ;  

−2𝑘 𝑥 𝑡   𝑠 𝑡  ≤ −2𝑘𝜔𝑠𝑇 𝑡 𝑠 𝑡 = 2𝑘𝑥𝑇 𝑡 𝑃𝐵𝐵𝑇𝑃𝑥 𝑡 = 2𝑘𝑥𝑇 𝑡 𝑃𝑠𝑥 𝑡 .Finally, as in  (Jafarov 2009),  

𝑉  𝑠, 𝑡 ≤ 𝑥𝑇 𝑡  𝑃𝑠𝐴0 + 𝐴0
𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 𝑥 𝑡 − 2𝑘𝜔𝑥𝑇 𝑡 𝑃𝑠𝑥 𝑡 + 2𝑥𝑇 𝑡  𝑃𝑠𝐴1 𝑥 𝑡 − 𝑕 + 𝛽𝑣 𝑥

𝑇 𝑡 − 𝑕 𝑃𝑠𝑥 𝑡 − 𝑕  

= 

 

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 

𝑇

 
𝑃𝑠𝐴0 + 𝐴0

𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 − 2𝑘𝜔𝑃𝑠 𝑃𝑠𝐴1

𝐴1
𝑇𝑃𝑠 −𝛽𝑣𝑃𝑠

  

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 < 0 

 

𝑉 ≤ 𝑧𝑇 𝑡 𝐻𝑠𝑧 𝑡 < 𝑂    where   𝑧 𝑡 =  𝑥(𝑡) 𝑥(𝑡 − 𝑕) 𝑇 

 

𝑉 < 𝑂 => 𝐻𝑠 =  
𝑃𝑠𝐴0 + 𝐴0

𝑇𝑃𝑠 + 𝛽𝑣𝑃𝑠 − 2𝑘𝜔𝑃𝑠 𝑃𝑠𝐴1

𝐴1
𝑇𝑃𝑠 −𝛽𝑣𝑃𝑠

 < 𝑂 

 
 

It is concluded that a stable sliding mode is generated on the switching surface  s(t)=0. 
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5.4. Stability of the closed-loop system 

Theorem 1. (Jafarov,2009). 

Suppose that the conditions of Lemma 1 hold. Then the time-delay system (24),  driven by the sliding mode controller 

(39) on the sliding surface in (30),(32) and (35)  is globally asymptotically stable, if the following conditions  (44) and 

(45) are satisfied: 

𝑃𝐴0 + 𝐴0
𝑇𝑃 + 𝑅1 − 2𝑘𝜔𝜆𝑚𝑖𝑛   𝐵

𝑇𝑃𝐵 −1 (𝑃𝐵𝐵𝑇𝑃) = −𝑄1 < 𝑂                                                        …                (44) 

𝑅1 = 𝑅1
𝑇 > 𝑂 ;  

𝐻1 =  

−𝑄1 𝑃𝐴1

𝐴1
𝑇𝑃 −𝑅1

 < 𝑂 ;                                                                                                                          …                (45) 

 

Proof: 

Choose the   Lyapunov-Krasovskii functional candidate  as   𝑉(𝑥, 𝑡) ≥ 0: 

𝑉(𝑥, 𝑡) = 𝑥𝑇 𝑡 𝑃𝑥(𝑡) + 𝛽𝑣  𝑥𝑇 𝜃 𝑅1𝑥 𝜃 𝑑𝜃
𝑡

𝑡−𝑕
   ;𝛽𝑣 > 0 , is a positive given constant. 

𝑉  𝑥, 𝑡 =
𝑑𝑉

𝑑𝑡
= 𝑥𝑇 𝑡  𝑃𝐴0 + 𝐴0

𝑇𝑃 𝑥 𝑡 + 2𝑥𝑇 𝑡 𝑃𝐴1𝑥 𝑡 − 𝑕 + 𝛽𝑣 𝑥
𝑇 𝑡 𝑅1𝑥 𝑡 − 𝑥𝑇 𝑡 − 𝑕 𝑅1𝑥 𝑡 − 𝑕  -

2 𝑥 𝑡  𝑥𝑇𝑃𝐵 𝐵𝑇𝑃𝐵 −1𝑘
𝑠(𝑡)

 𝑠(𝑡) 
= −2𝑘 𝑥 𝑡  

𝑠𝑇 𝑡 𝐵𝑇𝑃𝐵 
−1
 𝑠 𝑡 

 𝑠 𝑡  
≤ −2𝑘𝜆𝑚𝑖𝑛   𝐵

𝑇𝑃𝐵 −1  𝑥 𝑡  
 𝑠 𝑡  2

 𝑠 𝑡  
 =

−2𝑘𝜆𝑚𝑖𝑛   𝐵
𝑇𝑃𝐵 −1  𝑥 𝑡   𝑠 𝑡  .   

𝑠𝑇 = 𝑥𝑇 𝑡 𝑃𝐵 ;   𝑅1 = 𝑅1
𝑇 > 𝑂 

𝑉  𝑥, 𝑡 ≤ 𝑥𝑇 𝑡  𝑃𝐴0 + 𝐴0
𝑇𝑃 + 𝑅1 − 2𝑘𝜔𝜆𝑚𝑖𝑛   𝐵

𝑇𝑃𝐵 −1  𝑃𝐵𝐵𝑇𝑃 𝑥 𝑡 + 2𝑥𝑇 𝑡  𝑃𝐴1 𝑥 𝑡 − 𝑕 

+  𝑥𝑇 𝑡 − 𝑕 𝑅1𝑥 𝑡 − 𝑕   
 

𝑉  𝑥, 𝑡 ≤  

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 

𝑇

 

−𝑄1 𝑃𝐴1

𝐴1
𝑇𝑃 −𝑅1

  

𝑥(𝑡)

𝑥(𝑡 − 𝑕)
 < 𝑂         which    implies  (44)  and  (45). 

Remarks 

If  𝛽𝑣 = 1  and   2𝑘𝜔𝜆𝑚𝑖𝑛   𝐵
𝑇𝑃𝐵 −1 =1   then condition  (ii)  of Theorem 1 reduces to 

the  standard Riccati equation in (34), that is : 𝐴0𝑃 + 𝑃𝐴0
𝑇 − 𝑃𝐵𝑇𝐵𝑃 + 𝑄 = 0  ;    where  𝑄 = 𝑅1 + 𝑄1 ≥ 𝑂. 

 

Then 𝑘 can be found as   in    (46)   below. 

𝑘 = 1/ 2𝜔𝜆𝑚𝑖𝑛   𝐵
𝑇𝑃𝐵 −1                                                                                                                        …               (46) 

 

5.5. Design Procedure 
 

The following steps are for practical application of the theorem and the control design. 

1. Solve Riccati  Equation   𝐴0𝑃 + 𝑃𝐴0
𝑇 − 𝑃𝐵𝑇𝐵𝑃 + 𝑄 = 0 

2. Compute   𝑃𝑠 = 𝑃𝐵𝐵𝑇𝑃 

3. Compute  𝜔 =
1

 𝜆𝑚𝑎𝑥  𝑃𝑠 
   ;   

4 .Compute   𝜆𝑚𝑖𝑛 =𝜆𝑚𝑖𝑛   𝐵
𝑇𝑃𝐵 −1  

5. Find    𝑘 = 1/(2𝜔𝜆𝑚𝑖𝑛 ) 

6. Check whether  𝑴𝟏   is  negative  definite . 

𝑀1 = 𝑃𝐴0 + 𝐴0
𝑇𝑃 + 𝑅1 − 2𝑘𝜔𝜆𝑚𝑖𝑛   𝐵

𝑇𝑃𝐵 −1 𝑃𝑠 

 7. Check whether   𝑯𝟏   is  negative  definite :  𝐻1 =  

−𝑄1 𝑃𝐴1

𝐴1
𝑇𝑃 −𝑅1

  

If   𝑀1 < 𝑂    and   𝐻1 < 𝑂, then we can design a stabilizing VSC for the system. 
    

8. Sliding Surface and Switching function 

𝑆 = 𝐵𝑇𝑃  and   𝑔 = 𝑠 𝑥, 𝑡 = 𝑆𝑥 𝑡  
9. Variable  Structure  Controller  (VSC) 

𝑢 𝒙, 𝑡 = −𝑘 𝑥1 𝑠𝑖𝑔𝑛(𝑔)  
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5.6. Equation of the  Closed-loop System  

The system in (24)  with  𝑛 = 3   is  recalled below: 

𝑥  𝑡 = 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 − 𝑕 + 𝐵𝑢 𝑥, 𝑡  ; 
Or  equivalently: 
 

 

 

 

 

 

  In sliding mode , we have: 

𝑆𝑥 = 𝑆1𝑥1 + 𝑆2𝑥2 + 𝑆3𝑥3 = 0     =>𝑥3 = −
𝑆1

𝑆3
𝑥1 −

𝑆2

𝑆3
𝑥2 

And so, the equations (47) describe  the closed-loop system in sliding mode. 

 
𝑥 1  =                                  𝑥2

𝑥 2   =            −
𝑆1

𝑆3
𝑥1 −

𝑆2

𝑆3
𝑥2

                                                                                                                   …                 (47) 

6. Results 

𝑥  𝑡 = 𝐴0𝑥 𝑡 + 𝐴1𝑥 𝑡 − 𝑕 + 𝐵 𝑢 𝑥, 𝑡  

𝑥 𝑡 =   𝜙 𝑡           𝑖𝑓  𝑡 𝜖 −𝑕 ;   0   ,   𝑕 > 0 .                                                                                        …               (48) 

𝑥 𝑡 =  𝑥1 𝑥2 𝑥3 𝑇 ;𝑡 > 0.  

   

 𝐴0 =  
0 1 0
0 0 1

−𝛼0 −𝛼1 −𝛼2

  ;  𝐴1 =  
0 0 0
0 0 0

−𝛽0 −𝛽1 −𝛽2

 ;   𝐵 =  
0
0
1
  

 

 𝑄 = 2(𝛽0
2 + 𝛽1

2 + 𝛽2
2)  

1 0 0
0 1 0
0 0 1

   

 

𝛼0 = 0.3240 ;  𝛼1 = 1.8000;   𝛼2 = 2.7000;                                                                                           …                 (49) 

 

𝛽0 = 𝛼0/2 ;  ;𝛽1 = 𝛼1/2𝛽2 = 𝛼2/2; 

 

𝑥 𝑡 =  𝜙 𝑡 =  10 0 −5 𝑇   𝑖𝑓  𝑡 𝜖 −𝑕 ;   0  
 

𝑢 𝒙, 𝑡 = −𝑘 𝑥1 𝑠𝑖𝑔𝑛(𝑔);    𝑔 𝑡 = 𝑆𝑥(𝑡); 

 

 

 

 

 

We have the following results: 
 

P = 
 11.0921   8.7530 2.1497
 8.7530 15.5030 3.9614
2.1497 3.9614 2.5311

  ;   S = [2.1497     3.9614     2.5311]   and 𝑘 = 2.5846. 

 
 

We have  the reduced order closed loop system in         (50). 

 
𝑥 1             =                                        𝑥2

𝑥 2             = −0.8493𝑥1 − 1.5651𝑥2
                                                                                                       …              (50) 

 

For this system, stable sliding mode is theoretically guaranteed for any delay h,  provided the conditions of  Lemma 1 

and  Theorem 1 are met.  

𝑥 1 = 𝑥2

𝑥 2 = 𝑥3

𝑥 3 =    −𝛼0𝑥1 𝑡 − 𝛼1𝑥2 𝑡 −𝛼3𝑥2 𝑡 − 𝛽0𝑥1 𝑡 − 𝑕 − 𝛽1𝑥2 𝑡 − 𝑕 − 𝛽2𝑥3 𝑡 − 𝑕 + 𝑢 𝑥, 𝑡 
 

𝑥 1 = 𝑥2

𝑥 2 = 𝑥3

𝑥 3 =    −𝛼0𝑥1 𝑡 − 𝛼1𝑥2 𝑡 −𝛼3𝑥2 𝑡 − 𝛽0𝑥1 𝑡 − 𝑕 − 𝛽1𝑥2 𝑡 − 𝑕 − 𝛽2𝑥3 𝑡 − 𝑕 + 𝑢 𝑥, 𝑡 
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The following figures (Fig.1) to (Fig.14) are the different plots of the states, the control law and the switching function 

as well. A time response of the system consists of two phases: hitting or reaching mode and the  sliding mode. These 

two modes clearly appear  on the plots. During sliding mode, the states remain on the surface  𝑠 𝑡 = 𝑆𝑥 𝑡 = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                                         Fig.2- Controlled state 𝑥1 𝑡    for  𝑕 = 1.56 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 
                              Fig.3- Uncontrolled state 𝑥1 𝑡    for  𝑕 = 3.56                                                Fig. 4- Controlled state 𝑥1 𝑡    for  𝑕 = 3.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Fig.1- Uncontrolled state 𝑥1 𝑡    for  𝑕 = 1.56 

0 5 10 15 20 25 30 35 40
-2

0

2

4

6

8

10

time (s)

U
n
c
o
n
tr

o
ll
e
d
 x

1
(t

)

Uncontrolled state x1(t)   for h =1.56

 

Fig.1- FFFFont Fig.1- Uncontrolled state 𝑥1 𝑡    for  𝑕 = 1.56 
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Fig.4-Controlled state 𝑥1 𝑡    for  𝑕 = 3.56 
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         Fig.5-Uncontrolled state 𝑥2 𝑡    for  𝑕 = 1.56 
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               Fig.6-Controlled state 𝑥2 𝑡    for  𝑕 = 1.56 
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                                Fig.7-Uncontrolled state 𝑥2 𝑡    for  𝑕 = 3.56                                      Fig. 8-Controlled state 𝑥2 𝑡    for  𝑕 = 3.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig.9-Uncontrolled state 𝑥3 𝑡    for  𝑕 = 1.56                                  Fig.10-Controlled state 𝑥3 𝑡    for  𝑕 = 1.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                            

                                         Fig.11-Uncontrolled state 𝑥3 𝑡    for  𝑕 = 3.56                                    Fig.12-Controlled state 𝑥3 𝑡    for  𝑕 = 3.56     
 

 

 

Fig.9-Uncontrolled state𝑥3 𝑡     for  𝑕 = 1.56 
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         Fig.10-Controlled state𝑥3 𝑡     for  𝑕 = 1.56 
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          Fig.11-Uncontrolledstate𝑥3 𝑡     for  𝑕 = 3.56 

 

0 5 10 15 20 25 30 35 40
-50

-40

-30

-20

-10

0

10

20

30

40

time (s)

U
n
c
o
n
tr

o
ll
e
d
 x

3
(t

)

Uncontrolled state x3(t)   for h =3.56

 
 

           Fig.12-Controlled state𝑥3 𝑡     for  𝑕 = 3.56 
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Fig.7-Uncontrolled state 𝑥2 𝑡    for  𝑕 = 3.56 
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Fig.8-Controlled state 𝑥2 𝑡    for  𝑕 = 3.56 
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Below are the plots  of the control law and the switching function  for   𝑕 = 1.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                      Fig.13-Control law for  𝑕 = 1.56                                                                   Fig.14-Switching function for  𝑕 = 1.56 
 

 

7. Conclusion 

This paper has presented simulation results for a variable structure control of a time delay system. A single state delay 

dependent third order  system, is stabilized by this method, in spite of  disastrous effects of  the delay. It has been 

shown that, provided a system has a stabilizing feedback with known Lyapunov-Krasovskii  functional, a sliding 

surface can be obtained.  Sufficient conditions for sliding motion on such a sliding surface and asymptotic stability of 

the closed loop system  are guaranteed,  regardless of   the initial conditions. 
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