An Investigation in Drilling 1020 Steel Using Minimum Quantity Lubrication

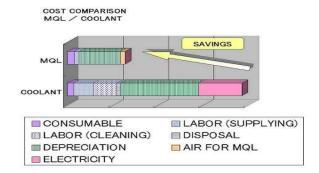
Nourredine Boubekri

Department of Engineering Technology University of North Texas Discovery Park 3940 N. Elm St, Suite F115B, Denton, TX 76207, USA.

Abstract

The current trend in the metal-cutting industry is to find ways to completely eliminate or drastically reduce cutting fluid use in most machining operations. Recent advances in tool and machine technology have made it possible to perform some machining without cutting fluid use or with minimum-quantity lubrication (MQL). Drilling takes a key position in the realization of dry or MQL machining. Economical mass machining of common metals (i.e., tool and construction- grade steels) requires knowledge of the work piece characteristics as well as the optimal machining conditions. In this study we investigate the effects of using MQL and flood cooling in drilling 1020 steel using HSS tools with different coatings and geometries. The treatments selected for MQL in this study are commonly used by industry under flood cooling for these materials. A full factorial experiment is conducted and regression models for both surface finish and hole size are generated. The results show a definite increase in tool life and better or acceptable surface quality and size of holes drilled when using MQL.

Keywords: Minimum Quantity Lubrication, MQL, Mist Cooling, 1020 Steel, Drilling.


INTRODUCTION

The current trend in the metal-cutting industry is to find ways to completely eliminate or drastically reduce cutting fluid use in most machining operations. In fact, an increasing number of countries view the use of coolants in machining ferrous and nonferrous components as undesirable for economical, health, and environmental reasons. Heins (1997) reported that coolant and coolant management costs are between 7.5% and 17% of the total manufacturing cost compared to only 4% for cutting tools. Ngoi & Sreejith (2000)stated that lubrication represents 16-20% of the product cost. Quaile (2000) reported that the coolant cost is approximately 15 percent of the life-cycle operational cost of a machining process. Chalmers (1999) reported that more than 100 million gallons of metalworking fluids are used in the U.S. each year and that 1.2 million employees are exposed to them and to their potential health hazards. The savings in cutting fluid and other related costs would be very significant if micro-lubrication (Minimum-Quantity Lubrication or MQL) is adopted, particularly in common machining operations (i.e., milling and drilling) which are currently conducted with flood application.

MINIMUM QUANTITY LUBRICATION

Minimum-quantity lubrication administers traditional metal removal fluids (oils and water miscible) at very low levels (.02 gallons/min or lower). These are once-through systems; there is no need to collect the applied fluid. MQL systems are considerably more cost-effective than flood application systems. McCabe (2002) reported that according to automakers, the annual operating cost of a flood-application-based machining system is estimated to be between \$350,000 and \$1,000,000. The cost for an MQL system is between \$100,000 and \$300,000. In the same study, he reported that the machining cost was reduced by 45% when minimum-quantity lubrication was used as compared to flood cooling in drilling aluminum. Horkos (2006) compared the cost of flood coolant versus MQL performed by a cutting tool manufacturer. As depicted in figure 1, a sharp cost reduction using MQL is realized compared to flood cooling.

Figure 1: Cost Comparison of Coolant and MQL (Source: Horkos Corp)

The challenge for machining using MQL is to provide substitutes for the four critical functions of flood cooling. While it is generally thought that MOL systems can supply excellent lubrication, results on acceptable cooling are not conclusive. Moreover recent advances in tool and machine technology have made it possible to perform some machining without cutting fluid use or with Minimum-Quantity Lubrication (MQL). Drilling takes a key position in the realization of some dry machining. The main problem in dry drilling of steels is the reliable removal of the chips from the drilled hole. Another problem is the tendency of the drill to jam in the hole if its diameter expands too much as a result of high tool temperature as reported by Lung, Klocke, Eisenblatter & Gerschwiler (1995).

The integration of hard coatings with cutting tool substrate materials has been found out to be the most successful innovation in improving wear resistance for various tools as reported by Ouinto (1996)&Sahoo,Chattopadhyay A.K& Chattopadhyay A. B. (2002). McCabe (2001) reported that coating drills with a variety of standard products raised the hole-producing capability of twist drills from 25 to approximately 225 holes when cutting aluminum. The tool geometry and cutting conditions were further optimized, which raised its drilling capacity to 5000 holes. Nouari, List, Girot & Coupard (2003) reported that with large cutting speeds and low feed; good surface quality and dimensional accuracy can be obtained with optimum drill geometry when machining aluminum under dry conditions. They also reported that tool life was increased significantly when optimized drill geometry was coated with a diamond film in the same experiment.

Klocke & Eisenblatter (1996) reported that dry drilling was not possible due to the high tendency of the aluminum to adhere to the tool. It was found that even a minimum quantity of cutting fluid that is fed towards the contact zone suffices to achieve a drilling operation that meets the stipulated quality characteristics. Braga(2003) conducted a study where the objective was to test the MQL technique in the drilling of aluminum silicon alloy with a solid carbide drill. They showed that drilling aluminum can be successfully achieved with MOL. One concern of MQL is that the metal working fluids mist themselves are potential health hazards. The standard advisory committee convened by the United States Occupational Health and Safety Administration (OSHA) in 1997 found that exposure to metalworking fluids may result in asthma, hypersensitivity pneumonitis, other respiratory disorders, dermatitis and other health conditions including cancer.

The costs associated with procurement, filtration, separation, disposal and records keeping for coolant are increasing. Already the costs for disposal of coolant are higher than the initial cost of the coolant, and they are still rising. Even stricter regulations are under consideration for coolant usage, disposal and worker protection. As a result, coolant in wet machining operations is a crucial economic issue. An alternative, machining with "Minimum Quantity Lubricant," or MOL, is gaining acceptance as a cost-saving and a potential environmentally friendly option in place of some wet machining processes.

EXPERIMENTAL TESTS

RESEARCH OBJECTIVES

There is a definite need to understand the effects of MQL in all metalworking processes. This study aims to study the effects of feed, speed, and cutting when drilling a 1-inch deep hole into a block of 1020 steel. The drilling is performed on a CNC Bridgeport milling machine under Minimum Quantity Lubrication.

The objectives of this research are:

- Evaluate the effects of cutting speed and feed rate on surface finish, hole size and tool life in drilling 1020 steel under minimum quantity lubrication.
- Make recommendation of feasible solutions based on the study results.

DESIGN OF EXPERIMENTS

This study was conducted using a randomized factorial design as shown in

Table 1. The two independent variables were cutting speed and feed rate. The depth of the hole was 1" throughout for all drilling operations. The two dependent variables were surface finish and hole size (inner diameter, I.D.). The cutting speed and feed rate are reported in square feet per minute, (SFM) and inch per revolution (IPR) respectively.

Drill Number	Speed=80SFM	Speed=100SFM	Speed=120SFM
Feed= 0.006IPR	Treatment 1	Treatment 2	Treatment 3
Feed=0.008IPR	Treatment 4	Treatment 5	Treatment 6
Feed=0.01IPR	Treatment 7	Treatment 8	Treatment 9

Table 1:Factorial Experiment for 1020 steel

CUTTING TOOLS

The tools used were high-speed steel (HSS) and cobalt drill bits manufactured by Guhring Inc. with the following specifications/dimensions as shown in Table 2.

Tool Specification	Diameter (in)	Coating	Cutting Angle (deg)
Drill 205	0.500	No coating	118
Drill 305	0.500	Cobalt	118
Drill 651	0.500	Titanium	118
Drill 657	0.500	Titanium	130

DRILLING EQUIPMENTS AND PROCESS

A computer numeric-controlled Bridgeport vertical milling machine, Discovery Torq-Cut 22, is used to perform the drilling operations for this study.

The work piece material is 1020 steels billets flame cut to a workable size of $7" \times 6" \times 2"$ as shown in, Figure 2.

Figure 2: Drilled Work Pieces

DATA COLLECTION AND ANALYSIS

The analysis of variance and the regression models were developed after the omission of the outliers from the data based on the Cook's distance method which is a scaled measure of the difference between the fitted values with and without the k^{th} observation in the model. That is:

$$D_{k} = \frac{1}{p+1} s^{2} \sum_{i=1}^{n} (\hat{y}_{i}(k) - \hat{y}_{i})^{2}$$
(1)

 $D_k = \text{Cook's distance}$

p = number of regressor variable in the model

s = standard deviation

 $\hat{y}_i(k)$ = fitted value for *i*th observation when *k*th observation is omitted.

$$\hat{y}_i = i^{th}$$
 observation

The analyses of variance and the results are reported in Tables 7 through 14. The F-statistics test was performed to insure that the model is significant at 5% confidence level. The analysis of variance was conducted and the important factors and interactions at the 5% confidence level are identified. The following are the prediction models for surface finish and inner diameter deviation using the four different HSS drill bits. The regression model is of the form:

$$S_{f}(S,F) = A_{0} + A_{1}S + A_{2}F + A_{3}S^{2} + A_{4}F^{2} + A_{5}SF(2)$$
$$H_{s}(S,F) = B_{0} + B_{1}S + B_{2}F + B_{3}S^{2} + B_{4}F^{2} + B_{5}SF(3)$$

Where *S* and F are speed and feed, respectively. S_f and H_s are the surface finish as measured by R_a and hole diameter, respectively. The coefficients regression models *A*'s and *B*'s are reported in Table 3. The R-squared and Adjusted R-squared values as shown in Table 4 indicate that a significant variation is predicted by the resulting regression models.

Teel	Tool Surface Finish				Hole Size					
1001	A ₁	A ₂	A ₃	A ₄	A ₅	B ₁	B ₂	B ₃	B ₄	B ₅
Drill 205	-5.89327	192805	0.05207	-5967869	- 913.47936	0.00053769	-4.50992	-0.00000249	268.06685	0.00493
Drill 305	24.48854	- 203150	- 0.15593	9090213	657.34356	0.00053366	-5.25426	-0.00000204	465.53860	-0.01950
Drill 651	1.41061	97789	- 0.04029	- 10052562	579.54642	0.00002852	1.65497	-8.62163E-7	- 214.71018	0.01429
Drill 657	0.61765	90841	- 0.01119	-5935234	-15.32430	0.00021732	-1.15854	-0.00000148	-12.25764	0.00999

Table 3: Coefficients of the regression models for 1020 steel

 Table 4: The R-squared and Adj R-squared values for the regression models for 1020 steel

Teel	Surface Finish		Inner Diameter Deviation		
Tool	R-squared	Adj R-squared	R-squared	Adj R-squared	
Drill 205	0.9783	0.9780	0.9276	0.9245	
Drill 305	0.9708	0.9701	0.8630	0.8541	
Drill 651	0.9456	0.9449	0.9474	0.9455	
Drill 657	0.9286	0.9278	0.9069	0.9038	

RESULTS

SUMMARY OF THE STUDY RESULTS

Table 5 shows the maximum tool life, surface finish, and hole size for the four drills used in this study under MQL cooling. Note that if the first, second and third best surface and hole size were close, then they were also reported. Otherwise only the best case was reported. Table 6 shows the feed and speed for maximum tool life, surface finish, and hole size reported in Table 5.

Table 5: Maximum Tool Life, Surface Finish, and Hole Size Using MQL

	Drill 205	Drill 305	Drill 651	Drill 657
Maximum Tool Life	1320	1260	900	900
2 nd Best Tool Life	960	N.S.T.R.*	660	840
3 rd Best Tool Life	N.S.T.R.	N.S.T.R.	570	N.S.T.R.
Best Average Surface Finish (micro inches)	287.85	234.5	238.27	175.0
2 nd Best Average Surface finish (micro inches)	308.64	N.S.T.R.	238.76	N.S.T.R.
Best Average Hole size (in)	0.5050	0.5050	0.5030	0.5030
2 nd Average Best Hole Size (in)	0.5065	N.S.T.R.	N.S.T.R.	N.S.T.R.

*Not Significant To Report

Table 6: Feed and Speed for Maximum Tool Life, Surface Finish, and Hole Size under MQL

	Drill 205	Drill 205		Drill 305		Drill 651		
	Speed (SFM)	Feed (IPR)	Speed (SFM)	Feed (IPR)	Speed (SFM)	Feed (IPR)	Speed (SFM)	Feed (IPR)
Best Maximum Life	100	0.008	100	0.008	80	0.006	80	0.006
2 nd Best Maximum Life	80	0.008	N.S.T.R.	N.S.T.R.	100	0.006	80	0.008
3 rd Best Maximum Life	N.S.T.R.	N.S.T.R.	N.S.T.R.	N.S.T.R.	80	.010	N.S.T.R.	N.S.T.R.
Best Average Surface Finish	100	0.006	100	0.010	120	0.006	100	0.008
2 nd Best Average Surface finish	120	0.008	N.S.T.R.	N.S.T.R.	100	0.010	N.S.T.R.	N.S.T.R.
	100	0.008	100	0.008	80	0.010	80	0.010
Best Average Hole size	N.A.	N.A.	120	0.006	N.A.	N.A.	N.A.	N.A.
	N.A.	N.A.	120	0.008	N.A.	N.A.	N.A.	N.A.
2 nd Average Best Hole Size	120	0.008	N.S.T.R.	N.S.T.R.	N.S.T.R.	N.S.T.R.	N.S.T.R.	N.S.T.R.

[!]Not Applicable

0	f	Mean	C	$\Gamma M 1$	D. F
Source	DF	Squares	Square	F Value	Pr > F
Model	5	43251930	8650386 2	673.21	<.0001
Error	296	957843	3235.95732		
Uncorrected Total	301	44209773			
Root MSE		56.88548	R-Square 0.	9783	
Dependent Mea	n	376.55150	Adj R-Sq 0.	.9780	
Coeff Var		15.10696	5 1		
Param	eter Estii	nates			
Param	eter	Standard			
Variable	DF	Estimate	Error	f Value	$\Pr > \mathbf{f} $
speed	1	-5.89327	2.52072	5.4756	0.0201
feed	1	192805	27908	47.7481	<.0001
IEEU	1	-5967869	1938789	9.4864	0.0023
	1				
feedsq speedsq	1	0.05207	0.01646	9.9856	0.0017

Table 7: Analysis of variance for surface finish; Drill 205

Table 8: Analysis of variance for surface finish; Drill 305

Sum of	-	Mean	a		D D
Source	DF	Squares	Square	F Value	Pr > F
Model	5	23080009	4616002	1597.30	<.0001
Error	185	534627	2889.87711		
Uncorrected Total	190	23614637			
Root MSE		53.75758	R-Square	0.9774	
Dependent 1	Mean	345.90263	Adj R-Sq	0.9767	
Coeff Var		15.54125	• •		
Parame	eter Estir	nates			
Parame	eter	Standard			
Variable	DF	Estimate	Error	t Value	$\Pr > t $
speed	1	24.48854	4.41177	5.55	<.0001
feed	1	-203150	60406	-3.36	0.0009
feedsq	1	9090213	3574171	2.54	0.0118
speedsq	1	-0.15593	0.02546	-6.12	<.0001
speedfeed	1	657.34356	202.38869	3.25	0.0014

Table 9: Analysis of Variance for Surface Finish; Drill 651

			Analysis of Variance				
Source		DF	Sum of Squares	Mean Squa	re	F Value	Pr > F
Model		5	39537233	7907447		1355.64	<.0001
Error		390	2274873	5833.00664	4		
Uncorrected Tot	al	395	41812106				
	Root 1	MSE	76.37412	R-Square	0.94	56	
	Deper	ndent Mean	313.50380	Adj R-Sq	0.94	49	
	Coeff	Var	24.36147				
			Parameter Estimates				
Variable	DF	Parameter	Standard				
		Estimate	Error	f Value		Pr > f	
speed	1	1.41061	2.53685	31.36		0.5785	
feed	1	97789	32229	9.18.9		0.0026	
feedsq	1	-10052562	2036736	24.4036		<.0001	
speedsq	1	-0.04029	0.01487	7.3441		0.0070	
speedfeed	1	579.54642	131.12447	19.5364		<.0001	
Response $1 = (1.4)$	41061*	Speed) + (977)	89*Feed) + (-10052562	*Feed*Feed) +		
(-0.04029*Speed		. / ·	, ,		•		

Table 10: Analysis of Variance for Surface Finish, Drill 657.

Sum o	DÍ -	Mean			
Source	DF	Squares	Square	F Value	Pr > F
Model	5	33034275	6606855	1116.51	<.000
Error	429	2538564	5917.39827		
Uncorrected Total	434	35572839			
Root MSE		76.92463	R-Square	0.9286	
Dependent	Mean	273.99885	Adj R-Sq	0.9278	
Coeff Var		28.07480			
Para	meter Es	timates			
Parameter	Stand	lard			
Variable	DF	Estimate	Error	f Value	$\Pr > f$
speed	1	0.61765	2.09643	0.0841	0.768
feed	1	90841	26049	12.1801	0.000
feedsq	1	-5935234	1697212	12.25	0.000
speedsq	1	-0.01119	0.01270	0.7744	0.378
speedfeed	1	-15.32430	133.55110	0.0121	0.908

Source	DF	Squares	Square	F Value	Pr > F
Model	5	0.00399	0.00079889	294.84	<.0001
Error	115	0.00031160	0.00000271	274.04	<.0001
Uncorrected Total	120	0.00431	0.00000271		
Root MSE	120	0.00165	R-Square 0.9	9276	
Dependent	Mean	0.00571	1	9245	
Coeff Var		28.84692	110/11.04		
	Param	neter Estimates			
Param	eter	Standard			
Variable	DF	Estimate	Error	f Value	$\Pr > \mathbf{f} $
speed	1	0.00053769	0.00010559	25.9081	<.0001
feed	1	-4.50992	1.19894	14.1376	0.0003
feedsq	1	268.06685	80.93303	10.9561	0.0012
speedsq	1	-0.00000249	6.942304E-7	12.8881	0.0005
speedfeed	1	-0.00493	0.00844	0.3364	0.5601

Table 11: Analysis of Variance for hole size deviation, Drill 205

Table 12: Analysis of Variance for hole size Deviation, Drill 305

Analysis of Variance						
Sum of		Mean				
Source	DF	Squares	Square	F Value	Pr > F	
Model	5	0.00235	0.00047074	97.04	<.0001	
Error	77	0.00037354	0.00000485			
Uncorrected Total	82	0.00273				
Root MSE		0.00220	R-Square 0.8630			
Dependent Mean		0.00528	Adj R-Sq 0.8	8541		
Coeff Var		41.71108				
	Param	eter Estimates				
Parar	Parameter					
Variable	DF	Estimate	Error	f Value	$\Pr > \mathbf{f} $	
speed	1	0.00053366	0.00020828	6.5536	0.0124	
feed	1	-5.25426	2.67230	3.8809	0.0529	
feedsq	1	465.53860	156.07624	8.8804	0.0038	
speedsq	1	-0.00000204	0.00000121	2.8224	0.0974	
speedfeed	1	-0.01950	0.00974	4.00	0.0487	
Response= (0.0005336	6*Speed)	+ (-5.25426*Feed)	+ (465.53860*Fe)	eed*Feed) + (-0)	.01950*Speed*Feed)	

Table 13: Analysis of variance for hole size deviation Drill 651

Analysis of Variance									
Sum of		Mean							
Source	DF	Squares		Square		F Value		Pr > F	
Model	5	0.00316	5	0.000632	20	497.46		<.0001	
Error	138	0.00017	7538	0.000001	27				
Uncorrected Total	143	0.00334	ļ						
Root MSE		0.00113	3	R-Square	0.94	74			
Dependent Mear	1	0.00459)	Adj R-Sc	0.94	55			
Coeff Var		24.5348	37						
Parameter Estimates									
	Param		imeter Standar						
Variable	DF		Estimat	e	Error		f Value		Pr > f
speed	1		0.00002	2852	0.00006	5125	0.2209		0.6422
feed	1		1.65497	1	0.77911		4.4944		0.0354
feedsq	1		-214.71	018	49.3894	8	18.9225		<.0001
speedsq	1		-8.6216	3E-7	3.59966	5E-7	5.76		0.0180
speedfeed	1		0.01429)	0.00323	3	19.5364		<.0001
Response= (0.00002852*	Speed) -	+ (1.65497	7*Feed) +	- (-214.710)18*Fee	d*Feed) -	+		
(-8.62163*Speed*S	⊥ ′		,						

Table 14: Analysis of variance hole size deviation; Drill 657

A	nalysis of V	ariance			
Sumo	of	Mean			
Source	DF	Squares	Square F Value	Pr > F	
Model	5	0.00314	0.00062880 292.30	<.0001	
Error	150	0.00032269	0.00000215		
Uncorrected Total	155	0.00347			
Root MSE		0.00147	R-Square 0.9069		
Dependent Mea	an	0.00444	Adj R-Sq 0.9038		
Coeff Var		33.00762			
	Parameter	r Estimates			
	Parameter	r Standard			
Variable	DF	Estimate	Error	f Value	$\Pr > f $
speed	1	0.00021732	0.00006628	10.758	0.0013
feed	1	-1.15854	0.82577	1.96	0.1627
feedsq	1	-12.25764	53.85238	0.529	0.8203
speedsq	1	-0.00000148	4.033727E-7	13.4689	0.0003
speedfeed	1	0.00999	0.00427	5.4756	0.0207

REFERENCES

Chalmers, R.E. (1999). Global Flavor Highlights NAMRC XXVII. Manufacturing Engineering, 123(1), 80-88.

Heins, H. J. (1997). Dry machining-A promising option. American Machinist, 126 (8), 92-93.

Horkos Corp. (2006), Innovation of Dry Machining. Retrieved March 1, 2006:

http://www.horkos.co.jp/english/products/imql01.php

Lung, D., Klocke, F., Eisenblatter, G., & Gerschwiler, K. (1995). Technologische Grundlagen der Trockenbearbeitung, *VORTAG*. Akademic Esslingen.

McCabe, J. (2001). Performance experience with near-dry machining aluminum, Lubrication Engineering. 125, 645-655.

McCabe, J. (2002). Dry Holes. Cutting Tool Engineering, 54(2).

Ngoi, B.K.A., & Sreejith, P. S. (2000). Dry Machining: Machining of the Future. Journal of Materials Processing Technology, 101, 287-291.

Nouari, M., List, G., Girot, F., & Coupard, D. (2003). Experimental Analysis and Optimization of Tool Wear in Dry Machining of Aluminum Alloys. *Wear*, 255, 1359-1368.

Sahoo, B., Chattopadhyay, A.K., & Chattopadhyay, A. B. (2002). Development of diamond coated tool and its performance in machining Al-11% Si alloy. *Bulletin of Material Science*, 25(6), 487-491.

Quaile, R. (2000). Understanding MQL: machining with minimum quantity lubricant can save money and improve both tool life and part finish. *Modern Machine Shop*. Retrieved March 1, 2006: from

http://findarticles.com/p/articles/mi_m3101/is_8_77/ai_n8695313/

Quinto, D.T. (1996). Cutting Tools. Tooling and Production, 62(2), 50-53.