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Abstract 
 

Recent theoretical research started on the relationship between the wavelength and temperature, suggests an 

important compromise. This compromise lies in the constant of proportionality.  Wien's law 
(Established in 1893 by studying the maximum of the emission spectrum of black body) provided a constant of 

proportionality equal to: k = 2.89. 10-3 m ° k, while that given in this study is k = 9.592. 10-3 m ° k , which is 

closer to reality. In addition , a work has been done to study the correlation of the radial part of atomic orbitals 
and the emission spectrum of hydrogénoid atoms.  
 

Keywords: quantum chemistry, gaz microparticles, Wien’s law 
 

Introduction. 
 

The deduction of this relation is simple, it predicts that Einstein photon energy might be equalized to translational 
energy carried by gaz microparticles which absorb a quantum of energy λν and convert it into heat by 

intramolecular  interaction or into electromagnetic radiation emission by rotation or vibration or both of them and 

having the same Einstein's photons magnitude. 
 

The  deduction is as follows: 

 Einstein photon energy 
   

 -     E = hν = h c/λ 
 

Gas microparticles translation energy  
 

 -     E = 3/2 kBT 
 

When these two energies are equalized, it follows 
                  

                hc/λ = 3/2 kBT     and       λT = kS . 1/ T (m) is obtained 
 

and          kS = 2/3 ( hc/ kB.)  = 2. 6,62617.10
-34

 .2,99792458.10
8
   =   9,592 .10

-3
  m °k 

                                                        3  .   1, 38066 . 10
-23 

 

                             λT =  9,592  .  10
-3

   . 1/T   (m) 

Where: 

                                  kS: El-Bahri Sakri constant  
                                 kB: Boltzmann constant  

                                  h : Planck constant  

                                 C : Light speed   
 

In this relationship (λ, T) it is seen on one hand that the wavelength is independent of gas micro particles mass 

and it is secondly inversely proportional to temperature. So for sun, the emissivity peak is at a wavelength 
corresponding to 0.5 microns [1-2] and emission is between 0.1 and 7 microns. 
 

According to the law established in this work by the author, the temperature of sun surface is deduced to be: 

19200 °K instead of 5800 0K calculated by Wien's law. This is evidenced by shorter wavelengths given in 

literature [3] because the temperature is inversely proportional to the wavelength and as wavelength λ is small as 

the temperature is high and vice-versa. 
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It is known that sun emits shorter and longer wavelengths. The colors are fairly well represented and our eye sees 

sun as a white star. Similarly, the temperature surface of the earth is 288 ° K which allows to deduce that most of 

the terrestrial radiation is in the infrared domain (λ = 30 microns). This relationship joins between temperature 
and wavelength and creates a link between temperature and color. This allows determining the temperature related 

to the object color (Table 1). 
 

Table 1 
 

Objet (black body) Temperature °K  λT calculated  Domain spectral  

Star type O 50.000 0,180 μm UV 

Sun 19200 0,50 μm Visible 

Earth 300 30 μm IR 

H2 molecular cloud 20 480 μm Submm 

Cosmic background 3 3 mm mm 
 

This relationship could be interpreted schematically as follows: 
 

     If :     λ→ 0  when   T→ ∞ 

              λ→ ∞ when    T→ 0 
                                                                                             Table 2 

Temprature °k        10 20 100 300 1000 1000000 

λT 104 (m)       9,592 4,80 0,9592 0,317 0,09592 0,00009592 

                                                                                                                       

 
 
 

 

This relationship (λ, T) has a wide application in astronomy and especially in high temperatures of the heat 

transfert and the author proposes to simplify the writing of temperature a scale multiple of Kelvin such that: 
 

1 Kk = 10
3
 °k (1 kilo kelvin) 

1 Mk = 10
6
 °k (1 Mega kelvin ) 

1 Gk = 10
9 
 °k  (1 Gega Kelvin)   

 

A complementary study in quantum chemistry [4-5] shows that there is an abnormal tip in the expression of the 

radial part Rnl ( r ). This tip shows that the radial part is sometimes positive Rnl> 0 and sometimes negative  Rnl (r ) 
< 0. This dual trend value of the radial part results in the polynomials of Laguerre associated L2ℓ+1

n+ℓ(r). In case of   

(2 ℓ + 1 = n + ℓ = p) with p is an odd positive number. We could write: 
 

      L
2ℓ+1

n+ℓ(2zr/na0) = L
2ℓ+1

n+ℓ(r) = L
p
p ( r) 

                                                                                                                              

      L
p
p(r) = d

p
LP(r) = d

p
[ e

r
 d

p
{ e

-r
. r

p
}] 

                   dr
p
           dr

p
    dr

p
                                                               

Figure:1: Link between temperature and color. Figure:2: Variation of temperature vs.  wavelength 
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If the calculations are performed correctly, it should be found that: 

 
      L

p
p (r) = ( -1)

p
 . p !   = (-1)

p
 . p !                                                      (1) 

                     ( p – p ) ! 

Indeed  these: 
 

For the atomic orbital 1S ;  ( n =1 , ℓ = 0 ) 

              L2ℓ+1
n+ℓ ( r) =  L1

1(r) = (-1)1. 1 ! = -1, which gives a negative radial part which is not logical. 
 

For the atomic orbital 2p ; ( n = 2  , ℓ = 1 ) 

              L2ℓ+1
n+ℓ (r) =  L3

3 (r) = (-1)3. 3 ! = -6, same remark as before. 

 
For the atomic orbital 3d ;  ( n = 3  , ℓ = 2 ) 

              L2ℓ+1
n+ℓ(r) =  L5

5 (r) = (-1)5 . 5 ! = -120,  always the same remark 
 

Calculations of the radial part from the equation (1) are in conformity with those of the theoretical radial orbitals. 

Indeed, for the 1S orbital of a hydrogenoid atom we have: 

R10 ( r )calcul = (-1)
1
 (2z/a0)

3/2
 (1/2)

1/2
.(zr/na0)

0
.e

 -zr/a0
.L1

 1
(2zr/na0)                   

 

             =(-1)
1
  (2√2) (1/2)

1/2
 (z/a0)

3/2
 e

 –zr/a
0 (-1)

1 

             = 2 (z/a0)
3/2

.e
 –zr/a0

    and the theoretical  R10 ( r ) theor= 2 (z/a0)
3/2

.e
 –zr/a0

 

Also for the orbital 2p, we have : . 

R21( r )calcul   = (-1)
3
(2z/2a0)

3/2
{ 1. 0 ! / 4 (3 !)

3
 }

1/2
.(2zr/2a0)

1
 .e

-zr/2a0
 L

3
3(2zr/na0)  

             =(-1)
3
 [1.1 /4.(3 !)

3
 ]

1/2
 ( z/a0 )

5/2
 r  e

 –zr/2a
0  (-1)

3
 . 3 ! 

             =  [1.1 / 4 .(3 !)]   (z/a0)
5/2

  r  e
 –zr/a

0                             

             = (z/a0)
5/2

.r. (1/2√6 )  e
 –zr/2a

0 = 1    .  (z/a0)
5/2

 r  e
 –zr/2a

0      And the theoretical: 
                                                              2(6)

1/2 

R21( r ) theor=  1       ( z/a0)
5/2

  r  e
 –zr/2a

0 

              2(6)
1/2 

Similarly we have for the atomic orbital 3d :  

R32 ( r )calcul = (-1)
5
 (2z/3a0)

3/2
( 1.0 !/6.(5 !)

3
)

1/2
(2zr/3a0)

2
 e

 –zr/3a
0 L

5
5(2zr/3a0) 

             = (-1)
5
 (2z/3a0)

3/2
( 1.1/ 6.(5 !)

3
)

1/2
(2zr/3a0)

2
 e

 –zr/3a
0 .(-1)

5
 .5 ! 

             = ( 2/3)
7/2

 ( 1.1/ 6.(5 !))
1/2

  (z/a0)
7/2

  r
2
  e

 –zr/3a
0 

             =  (2/3)
3
(2/3)

1/2
(1.1/ 6.(5 !))

1/2
  (z/a0)

7/2
  r

2
  e

 –zr/3a
0   

             = (8/27) (2/6.3 .120)
1/2

   (z/a0)
7/2

  r
2
  e

 –zr/3a
0   

             =  (8/27) ( 1 / 9 .4 .30)
1/2

 (z/a0)
7/2

  r
2
  e

 –zr/3a
0  after  rearrangement and simplification we coud have: 

             = 4. (z/a0)
7/2

  r
2
  e

 –zr/3a
0 /  81(30)

1/2
                                  

 

and the theoretical   is given by : 

R32 ( r )théor   =    4.  (z/a0)
7/2

  r
2
  e

 –zr/3a
0 /81(30)

1/2 

 

It is clear that the radial parts Rnl (r) calculated and Rnl (r) given by the theoretical literature are in full compliance. 
To remedy this error, the author proposes to rewrite the radial part Rnl(r) for different above atomic orbitals and 

others as follows: 
 

       (-1)
2ℓ+1

{(2z/na0)
3
 (n-ℓ-1) !    }

1/2
.(2zr/na0)

ℓ
. e

-zr/na
 . L

2ℓ+1
n+ℓ(2zr/na0),    for :    n+ℓ=2ℓ+1= p 

                                  2n[(n+ℓ) !]
3 

Rnl(r)={                      

                       
      { (2z/na0)

3
 ( n-ℓ-1) !  )   }

1/2
.(2zr/na0)

ℓ
. e

-zr/na 
 L

2ℓ+1
n+ℓ(2zr/na0) ,            for :    n+ℓ ≠ 2ℓ+1 

                        2n[(n+ℓ) ! ]
3
 

  

with :        a0 – Bohr atom 
 

It is known that: 
 

                    L
n
p(r) = (-1)

n
 p !  e

r
 r 

-n
 d

p-n
 ( e-

r
 r

p
)                                                                  ( 2 ) 

                                  (p – n) !         dr
p-n
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To complete this theoretical research on these hydrogen atom orbitals, we calculated at the end the probability Pn 

(r) of the electron presence in these orbitals using new mathematical formulas proposed by the author,  in fact: 
- For the hydrogen atom 1S orbital, the probability is maximum and corresponds to the zero derivative of the 

function Pnl( r )  that means dP10/dr = 0 and dP10/dr = 4π  . 2r e
-2r/a

0 ( 1 – r/a0) = 0 . So r =0 and   r = a0  

                                                                               a
 3
  

The probability of the electron presence according to the equation proposed by the author (Equation 4) is : 
 

                         ∫ Pn( r ) e
α r

 = Qn( r ) e
α r

                                                                              ( 3 ) 

 
Where :    Pn( r ) is a polynomial of degree « n »  and Qn (r) is a polynomial of degree « n » with undetermined 

coefficients. This integral is solved by parts integration (n times). The author proposes to solve it as a simple and 

effective series as follows: 
                 a0                                                          α                                       a0 

Where :            ∫ Pα( r ) e
-r/a

0 dr = - e
-r/a

0 [ ∑     1   α ! a
(α +1 –n)

( r )
n
 ]  │                                           ( 4 )     

                        0                                      n=0    n!                              0 

 
With:         α – the highest power in “r” the polynome Pα(r)    

                                                                                                                      π2π 

  So we have:      P10( r ) = ∫[ Ψ( r, θ , φ)] 2 r2 sinθ drdθdφ = [ Rnl( r )]
2 r2 dr ∫  ∫ [│Ynl ( θ , φ )]2 sinθdθdφ  

                                                                                                                      0 0 

                                       = 4π r2 [Rnl( r )]
2 

–Total 1S wave function of the hydrogen atom 

 
                          Ψ100( r, θ ,φ ) = 1 (1/a0)

3/2 e – r/a
0  

                                                    ( π )1/2 

 

Using (eq.3) :                  ∫ r2 e-2r/a
0 dr = ( Ar2 + Br + C ) e-2r/a

0 

 

                                                               r 2 e- 2r/a
0  = ( 2Ar + B) e-2r/a

0  - 2/a0( Ar2 +Br + C) e-2r/a
0 

                                                                   - 2A/a0 = 1  ▬►A = - a0/2 

                                                               2A -2B/a0 = 0  ▬►B = - a0
2/2 

                                                                B – 2C/a0 = 0  ▬►C = - a0
3/4 

 
                      a0                                                                                                                 a0 

Where         ∫ r2 e- 2r/a
0 dr =  -1  ( 2a0r

2  +  2a0
2r  +  a0

3 ) e -2r/a
0  │ =  a0

3 ([-5]e-2  +  1) 

                     0                        4                                                    0     4 
We have finally  

                   

                 a0                   
  P10 ( r ) = ∫4πr2ψ2

100dr  =  4π a0
3 ( [-5] e-2  +  1) = 1 – 5/ e2 = 0,323  where 32,3% 

                  0                        4π a0
3  

The probability of electron finding in 1S orbital of the hydrogen atom is P10 (r) = 32.3% which is quite similar to 

the theory.  
- Similarly for 2p atomic  orbital of the hydrogen atom we have: 

                                                                                                    π                     2π 

P21( r ) = ∫[Ψ ( r ,θ , φ]2 r2 sinθ drdθdφ =  1 (1/a0)
5 ∫ r4 e- 2r/2a

0 dr ∫cos2θ sinθ dθ ∫ dφ 
                                                                 16 . 2π                        0                     0 

   

                                                              =  1 ( 1/a0)
5 .2π .2   ∫ r4 e-r/a

0 dr 

                                                                      16 .  2π  .  3 
  Ψ210( r , θ , φ) = 1 (1/a0)

5/2 r e- r/2a
0 cosθ   is  2p orbital total  wave function of of  the hydrogen atom   

                            4(2π)1/2 

the maximum probability corresponds to the derivative zero dP21/dr = 0 that means, the maximum probability  is 
between  r1 and r2 that they might be determined  
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                             dP21/dr   = 1  (1/a0)
5  r3 e-r/a

0 (4 – r/a0) = 0  ,where r1 = 0   and    r2 = 4a0 

                                                   24                            
According to equation (3) or (4) we have:             
            4a0 

             ∫ r4  e- r/a
0 dr  = ( Ar4 + Br3 + Cr2 + Dr + E ) e- r/a

0 

           0 

                 r4  e- r/a
0   = ( 4Ar3 + 3Br2 +2Cr + D) e –r/a

0  -  1/a0(Ar4 + Br3 + Cr2 + Dr + E) e –r/a
0 

                         -A/a0  = 1  ▬► A = - a0 
                   4A – B/a0= 0  ▬► B  = - 4a0

2 

                   3B -  C/a0 = 0  ▬► C  =  - 12a0
3 

                   2C – D/a0 = 0  ▬► D  =  - 24a0
4 

                     D  - E/a0 = 0  ▬► E  =  - 24a0
5 

  
It finally comes that the probability is equal to: 
 

                                                                                                       4a0 

P21 ( r ) = 1 . 1 . [  - e-r/a
0

  (a0 r
4 + 4a0

2 r3 + 12a0
3 r2 + 24a0

4 r + 24a0
5  ]  │  = 1 – 824   = 0,3709   or  37,09%   

          24 . a0
5                                                                                   0            24 e4 

. 

This found value confirms the theory. Also, for the 3d orbital of the hydrogen atom we have: 

                                                                                            π                                 2π  
P32 ( r ) = ∫[Ψ ( r ,θ , φ]2 r2 sinθ drdθdφ = 1 (1/a0)

7 ∫r6 e -2r/3a
0 dr∫ (3cos2θ – 1 )2 sinθ dθ ∫ dφ 

                                                           (81)2 6π                    0                                  0 

 
Where: Ψ320 ( r , θ , φ ) = 1 ( 1/a0)

7/2   r2 e- r/3a
0 ( 3 cos2θ – 1)   is 3d total wave function of the hydrogen atom 

                                  81 ( 6π )1/2                        

             π                                                                                        π 
 We have:    ∫ ( 3cos2θ  - 1 )2 sinθ dθ = - [9/5 cos5θ – 2 cos3θ + cosθ] │ = 18/5 -2 = 8/5 

                   0                                                                                         0       

 

The probability is maximum corresponding to the derivative zero dPnl/dr = 0,  between r1 and  r2. 
 

Where:    dPnl/dr = 1 ( 1/a0)
7 8  2π  (  r6 e – 2r/3a

0)
’ = K r5 e – 2r/3a

0 ( 6  - 2r/3a0) = 0 ,    so : r1 = 0   and    r2 = 9a0 

                               (81)2 6π   5 
 

Similarly and using equation (3) we have:  ∫ r6 e – 2r/3a
0 dr = (Ar6 + Br5 +Cr4 +Dr3 +Er2 +Fr +G ) e – 2r/3a

0  

 r6 e – 2r/3a
0 = ( 6Ar5 +5Br4 +4Cr3 +3Dr2 + 2Er +F) e – 2r/3a

0 – 2/3a0 (Ar6 + Br5 +Cr4 +Dr3 +Er2 +Fr +G) e – 2r/3a
0 

           
                          -2A/3a0= 1  ▬► A = - 3a0/2 
                   6A – 2B/3a  = 0 ▬► B = - 27a0

2/2 

                  5B – 2C/3a0 = 0  ▬► C = - 405a0
3/4 

                  4C – 2D/3a0 = 0  ▬► D = - 1215a0
4/2 

                  3D – 2E/3a0 = 0  ▬► E = - 10935a0
5/4 

                  2E – 2F/3a0= 0    ▬► F = - 32805a0
6/4 

                    F – 2G/3a0= 0    ▬► G = - 98415a0
7/8 

 

So we have:    
 

 9a0                                                                                                                                                                                                                                                                    9a0 

 ∫ r6 e – 2r/3a
0 dr = - 1 /8 e – 2r/3a

0(12a0 r
6 +108a0

2 r5 +810a0
3 r4 +4860a0

4 r3 +21870a0
5r2 +65610a0

6 r + 98415a0
7  )  │  

0                                                                                                                                                                               0 
 

The probability of  the electron presence in 3d orbital of the hydrogen atom is: 
 

P32 ( r ) =   1 (1/a0)
7 8  2π  a0

7  [98415  -  24072309   ]  =  0, 3933 where 39,33% 

                   (81)2  6π  5   8                             e6 
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As before the value of the probability calculated for the 3d orbital of the hydrogen atom is exactly the same as that 

given in the literature. 
 

Further, it is known that the probability of an electronic transition (the oscillator strength) of the state Ψi = Ψnlm( r, 

θ , φ ) to Ψk = Ψn’l’m’ ( r , θ , φ ) state depends straightly of  the transition energy and quadratically to the value of 

the transition dipole moment Dki (Mulliken formula and Rieke): 
                                                fki =  K∆EkiDki

2 

where K is the proportionality coefficient which depends on the chosen system of units and is defined as  

       Dki  = ( Ψk │∑ rμ│ Ψi ) 
                            μ    

with rμ   is the radius vector of the μth electron of the atom. Transitions, for which Dki= 0 are called forbidden in 

the dipole approximation. Lines corresponding to these transitions are absent in the observed spectrum. 
 

With regard to the emission spectrum of hydrogen atom (Z = 1), the author proposes new formulas similar to that 

of Mulliken and Rieké that will address the spectrum from the total wave of the orbit       Ψki( r,θ,φ ) and 
uncertainties read on the frequency and wavelength Δν and Δλ. 
 

Indeed, these formulas are applicable for all hydrogenoid atoms, their form is: 
 Δλ = Δν = Dki|e| ε                                                                                                                    (5) 

 λ2      C         hC  

We divide and multiply  the equation (5) by the frequency ν, we have: 

 
Δλ =  Dki|e|ε ν  = Dki|e|εRHZ2  ( 1  -     1 )                                                                                  (6)       

 λ3         h C ν                     h C        n1
2      n2

2 

With:  Dki (a0) = D’. a0/z  (m)  -- proportionality factor that takes into account the initial state Ψk(r,θ,φ ) and the 
final state   Ψi(r,θ,φ) ,   or :  D’ – number  addimensional 

 ε - electric field strength , V/m 
 

To justify the validity of these formulas, we compare the spectrum found by these formulas to Lyman, Balmer, 
Pashen ...etc given in the literature for the hydrogen atom and all hydrogenoid atoms 
 

For the first line of Lyman, we have the transition Ψ210→Ψ100 or (n2=2 →n1=1), To do this, first calculate the Dki 
factor as: Dki =  Ψk|z|Ψi , along the axis « oz » with z = rcosθ, under an electric field strength 

 ε, (Stark effect on dégénérescence levels). 
 

With              Ψ210 =   1  .1         ( Z/a0)
5/2 r e-Zr/2a

0 cosθ  

                                   (8π)1/2 
                      Ψ100 =     1    ( Z/a0)

3/2 e-zr/a
0 

                                    (π)1/2 

                    ∞  π  2π 
Then:  Dki = ∫  ∫   ∫ R٭nl(r)[Y٭l(θ,φ)]٭ rcosθRnl( r )Y

m
l(θ,φ)r2sinθdrdθdφ 

                    0 0  0  

                                        
                                   ∞                            π                  2π                          ∞                  π                  

Dki   = 1 .1         (z/a0)
4 ∫ r4e-r(1z/a

0 
+1z/2a

0
)dr∫cos2θsinθdθ ∫ dφ   =  1(z/a0)

4    ∫r4 e-r(3/2a
0
)dr∫cos2θsinθdθ  

            2(8π2)1/2           0                           0                   0             (8)1/2          0                  0                    

                                                                      
                ∞                                                              π 

With:        ∫r4 e-r(3z/2a
0
)dr = 4 !                   and           ∫cos2θsinθdθ = 2/3 

                0                     (3z/2a0)
5                            0 

 

Where :    Dki = 1. 24.64. (z/a0)
4(a0/z)5  =  0,745 a0/z  ( m) 

                         (8)1/2 720   

        
 

And :    Δν =  Dki|e |ε  = 0,745|e|εa0 = 0,745 1,60 10-19 106 0,53 10-10  = 9,54 109 s-1 

                           h                 h                                            6,62 10-34 
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Then :     Δλ  =  Δν  = Dki|e|ε  =  9,54 109   = 31,8  m-1 

                λ2        C         hC            3 .  108 
 

              Δλ =  Dki|e | ε RHZ2 ( 1  -    1 ) = 0,754. 1,60.10-19 .106 .0,53. 10-10. 1,1. 107(1/1 -1/4)  = 2,624 108  m-2 

               λ3           hC              n1
2     n2

2                           6,62 .10-34  3 108 
 

We divide (Δλ/λ2)/(Δλ/λ3) which gives us the calculated  length  λcalculated  =     31,8         = 1212 Å  

                                                                                                                             2,624 108  

the wavelength of the first line of Lyman given by the literature is: λtheoretical  = 1212,12Å. We can see that there is 

an excellent match between the theory and the calculation. Generally, all the transitions are not allowed because 

Dki=0, such as Ψ200→Ψ100  , Ψ320→Ψ100  , Ψ420→Ψ210  …etc. 

while:  Ψ320→Ψ210 is the first line of Balmer and Ψ430→Ψ320 is the first line of Pashen, so we can get all the lines 
of each series of hydrogenoid atoms by these formulas. 
 

So the first line of Balmer  Ψ320→Ψ210  or  between ( n2 = 3→ n2= 2)  is equal to: 

 

                                                               Ψ320 =     1          (z/a0)
7/2 r2 e-zr/3a

0 (3cos2θ -1) 
                                                                            81(6π)1/2 

                                                                Ψ210 =   1 (z/a0)
5/2 r e-zr/2a

0 cosθ 

Then:                                                                   4(2π)1/2 

                                ∞                      π                                     2π 

Dki = 1   (z/a0)
6              ∫ r6 e-r(5z/6a

0
) dr ∫(cos2θ – 1) cos2θsinθ dθ ∫dφ 

          81.4 .(12)1/2π  0                     0                                      0 
                                     ∞ 

With:                             ∫ r6 e-r(5z/6a
0
)dr =  6 ! 

                                     0                        (5z/6a0)
7  

                                     π 
And:                             ∫ (3cos4θ – cos2θ)sinθdθ = 8/15 

                                    0 

So: Dki =  1.1.8.720.279936 ( a0/z)  = 2,451 a0/z  (m) 
                 324 (3)1/2 .15.78125 
 

And:  Δλ = Δν = Dki|e|ε  = 2,451 .1,60. 10-19.106. 0,53.10-10  = 104,65   m-1 

           λ2     C         hC                   6,62 .10-34 3 .108 
 

          Δλ = Dki|e|ε RHZ2  ( 1  -  1 ) = 2,451 .1,60.10-19.106.0,53.10-10.1,1 .107 .(1/4 – 1/9) = 15,989 .107   m-2 

          λ3        hC                n1
2   n2

2                     6,62 . 10-34  .  3  .108 

 
 

So the wavelength of the first Balmer line for hydrogen (Z = 1) is: (Δλ/λ2)/(Δλ/λ3)  

is equal to: λcalculated = 104,65         = 6545,53 Å , the theoretical value of this wavelength for the same atom is 
                                   15,989 .107 

λtheoretical =6545,45Å.We can say that the calculated value fits well with the theoretical one. 
 

Also for the first line of Pashen between the total wave functions Ψ430→Ψ320 or between (n2=4→n1=3). 

Namely: 
 

                                                     Ψ430 = 1 (7/6π140)1/2(z/a0)
9/2 r3 e-zr/4a

0(5cos3θ -3cosθ) 
                                                                        384  

                                                     Ψ320 = 1   (z/a0)
7/2 r2 e-zr/3a

0(3cos2θ -1) 

                                                                   81 (6π)1/2 

the Dki factor is first calculated  
 

                                    ∞                      π                                                            2π 

Dki = 1.   (z/a0)
8                 ∫ r8 e-r(7z/12a

0)dr ∫ (5cos3θ – 3cosθ)(3cos2θ -1)cosθsinθdθ∫dφ 

        384.81.6π(20)1/2  0                      0                                                             0 
                                           ∞                    π 
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  =          1       (z/a0)

8         ∫r8 e-r(7z/12a
0
)dr ∫ (15cos5θ – 14cos3θ +3cosθ) cosθsinθdθ 

         384.81.3.4,472          0                      0 

                             ∞ 

With :                    ∫ r8 e-r(7z/12a
0
) dr  =  8 ! 

                             0                          (7z/12a0)
9 

 

                             π 
                             ∫(15cos6θ – 14cos4θ + 3cos2θ)sinθdθ = 24/35 

                            0 

Then:       Dki = 5155483,221 .24  (z/a0)
8(a0/z)9  =  8,471 a0/z  (m) 

                              384.81.3.4,472.35 

 

And :      

                   ∆λ  =  ∆ν = Dki|e|ε   = 8,471 .1,60.10-19.106.0,53 .10-10  =361  m-1 

                    λ2        C        hC              6,62 .10-34 . 3 .108 

 

                  ∆λ =  Dki|e|ε RHZ2  ( 1   -   1  ) = 8,471.1,60.10-19.106.0,53.10-10.1,1.107.(1/9 – 1/16) = 1,93 .108  m-2 

                   λ3            hC            n1
2     n2

2                           6,62.10-34 .3.108  
 

Indeed, the first line of Pashen is equal to: (∆λ/λ2)/(∆λ/λ3)→λcalculated=  0,361 .103 =18704,66 Å 

                                                                                                                    1,93 .108 
According to the literature, this line has a wavelength equal to: λtheoretical = 18701,29Å, in this case it is clear that 

the theory coincides with the calculations and there is between theory and calculation an excellent match. 

In summary, the results found can be represented as follows: 
 

 n=5  ───────────∙──────────       Ψ540= 1 (2/5)11/2 (1/63π)1/2(z/a0)
11/2 r4 e-zr/5a

0(35cos4θ-20cos2θ +9) 

                                         ∙                                                5120 
                                         ∙       etc….. 

                                         ∙ 

 n=4  ───────────▼──────────    Ψ430= 1.(7/6π.140)1/2(z/a0)
9/2r3 e-zr/4a

0(5cos3θ – 3sosθ) 

                                    │ λcalc   =18704,66 Å                     384 
                                    │ λthéo r  =18701,29 Å 

                                    │ 

n=3  ──────────▼───────────    Ψ320 = 1. (z/a0)
7/2     r2 e-zr/3a

0(3cos2θ -1) 
                                 │   λcalc     = 6545,53 Å                  81(6π)1/2 

                                 │   λthéo r    =6545,45 Å 

                                 │ 
n=2  ─────────▼───────────      Ψ210 = 1. (z/a0)

5/2  r e-zr/2a
0 cosθ 

                           │         λcalc      =1212 Å                         4(2π)1/2 

                           │         λthéo r    =1212,12 Å  

                           │ 
n=1 ───────▼──────────────     Ψ100 = 1.(z/a0)

3/2   e-zr/1a
0     

                                                                                          (π)1/2 

 

Conclusion                
 

The theoretical relationship (λ, T) seems to be more close to reality in two ways: 

- The temperature on the surface of sun found by the author is much higher than that found by Wien's law which 

is quite accurate. 

 
- The short wavelengths emitted by the sun justify its high surface temperature. 

The radial part Rnl(r) can be now calculated with great precision, always it takes a positive value which makes 

sense regardless of the sign of the associated Laguerre polynomial. The radial parts calculated according to new 
mathematical formula ( éq ; 1- 4 ) and those given in the literature are in absolut conformity.  
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This relationship can be applied quite exceptional in the field of astronomy and astrophysics; it lets known the 

temperature of the stars and objects (black  body) from far, by simply reading the wavelength. The same notice 
that we can make out about the probability of electron’s within these otbitals.  
 

Regarding the spectrum of atomic hydrogen, the latter has been described with great precision from the 

calculations (eq . 5-6) of the wavelength of the first spectral line of each series, compared with that given in the 
literature. This comparison between theory and calculations is found to be excellent. 

Finally, we can say firmly that all was said about the hydrogen atom, may actually be said about all other 

hydrogenoid atoms. 
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