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Abstract 
 

An analytic theory for the electromagnetic scattering from a perfectly electromagnetic conducting (PEMC) random 

width strip is developed, using the duality transformation which was introduced by Lindell and Sihvola. The theory 
allows for the occurrence of cross-polarized fields in the scattered field, a feature which does not exist in standard 

scattering theory. That is why the medium is named as PEMC (perfect electromagnetic conductor). PEMC medium 

can be transformed to Perfect Electric Conductor (PEC) or Perfect magnetic Conductor (PMC) media. As an 
application, a plane wave reflection from a planar interface of air and PEMC medium is studied. PEC and PMC are 

the limiting cases, where there is no cross-polarized component. 
 

1  Introduction 
 

The problems we are considering, i.e., scattering from half plane, strip or grating are very well known in the field of 

electromagnetics. Our aim is not to resolve these problems but introduce few random parameters in these planner 
boundaries [1, 2, 3, 4]. A complete solution exists for the perfectly electric conducting case in literature, based on 

the following equations and conditions, and to study the effects of the stochastic nature of these boundaries on the 

scattered field. Before examine the random boundaries, i.e., scatterers with random parameters it is instructive to 
examine the behavior of random with strip, because in two dimensional planner perfectly conducting boundaries, 

with sharp edges.  
 

2  Formulation 
 

Consider two dimensional case; two parameters related to the strip are: location of strip and its width. Assume that 

strip lies in the 𝑥𝑧-plane and its location is deterministic. Let the origin lies at the starting edge of the strip and in 

this case the exact width of the strip is not known, so it is determined probabilistically only, i.e., here 𝑏 is a random 

variable of some known probability density function. Take the exponential distribution of random variable 𝑏; 

whose probability density function is already defined. Since the scattered field is dependent on 𝑏 and due to 

random nature of 𝑏, only one realization of scattered field for one value of 𝑏 is obtained. To find the statistics of 
scattered field at least up to second order, i.e.,the average scattered field and its variance. Since the scattered field is 

sum of reflected field and edge diffractions and according to statistical theory, the average scattered field is average 

reflected field and average diffracted fields. The variance of scattered field depends on the variance of reflected and 

diffracted fields and their cross-covariance. The following averages will be calculated.  
 

3  Formulation of The Problem 
 

Consider a uniform plane wave incidents upon an electric conducting strip of width 𝑏 and infinite length along 

𝑧-direction, as shown in the Fig.(1).  
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Figure  1: Geometry of the problem 

 
 

The incident electric and magnetic field can be written as 
 

 𝐸𝑖 = 𝑎 𝑧𝐸𝑜𝑒
𝑖𝑘𝑟 cos (𝜙 𝑖−𝜙) (1) 

 

 𝐻𝑖 =
𝐸𝑜

𝜂
(𝑎 𝑥sin𝜙𝑖 − 𝑎 𝑦cos𝜙𝑖)𝑒𝑖𝑘𝑟 cos (𝜙 𝑖−𝜙) (2) 

 

where 𝐸𝑜 is a constant and it represents the amplitude of the incident electric field. The main interest is in the 
scattered field for the far zone only. The first thing is to model the scatter field, as sum of reflected field and edge 

diffractions. It can be described as,  

 𝐸𝑧
𝑠 = 𝐸𝑟 + 𝐸𝑑  (3) 

 

 where 𝐸𝑟  is observed only in shaded region, as shown in Fig.(1). We are modelling the edge diffraction in the far 

zone, by field radiated by a line sources placed at edge locations. We modelled the current density induced on the 

surface of the strip by constant current plus two delta sources. The reflected field at 𝑥𝑧-plane parallel to strip at 

𝑦-depth could be represented by,  
 

 𝐸𝑟 = 𝑅𝐸𝑜𝑓(𝑥, 𝑦)𝑒𝑖𝑘 (𝑥cos 𝜙𝑟+𝑦sin 𝜙𝑟
= 𝑅𝐸𝑜𝑓(𝑥, 𝑦)𝑒𝑖𝑘cos (𝜙𝑟−𝜙) (4) 

 

where 𝜙𝑟 = 2𝜋 − 𝜙𝑖 , as the reflected field is observed in the shaded region only, therefore 𝑓(𝑥, 𝑦) is 1 inside the 

shaded region but 0 outside this region.  
 

 𝑓(𝑥, 𝑦) = 𝑢(𝑥 )1 − 𝑢(𝑥 − 𝑏) (5) 
 

 where 𝑢(𝑥) is the unit step.  
 

4   Average Reflected Field and Its variance 
 

Taking the average of both sides of the reflected field: 
 

 < 𝐸𝑟 >= 𝑅𝐸0𝑒
𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) < 𝑓(𝑥, 𝑦) > (6) 

 

where < 𝑓(𝑥, 𝑦) >= 𝑢(𝑥 )(1−< 𝑢(𝑥 − 𝑏) >), using the exponential distribution of 𝑏, the average < 𝑢(𝑥 − 𝑏) > 

can be calculated as, 
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 < 𝑢(𝑥 − 𝑏) >=  ‍
𝑥 

−∞
𝑃𝑏(𝑏)𝑑𝑏 = 1 − 𝑒−𝜆𝑥  (7) 

 

also we have 

 < 𝑓(𝑥, 𝑦) >= 𝑢(𝑥 )𝑒−𝜆𝑥  (8) 
 

Therefore average reflected field will become 
 

 < 𝐸𝑟 >= 𝑅𝐸0𝑒
−𝜆𝑥 𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙𝑢(𝑥  (9) 

 

The variance of reflected field as, 
 

 𝑣𝑎𝑟(𝐸𝑟) = 𝐸0
2𝑒−𝜆𝑥 (1 − 𝑒−𝜆𝑥 )𝑢(𝑥 ) (10) 

 

From the above solution, it can be observed that, on the average reflected field is a plane wave, its strength decays 

exponentially along the positive 𝑥-direction in any plane parallel to the strip at depth 𝑦, in the shaded region. The 

variance of reflected field field first increases and is maximum at 𝑥 = 𝑙𝑛2/𝜆 and then it decreases to zero. The 

variation of average reflected field and its variance with respect to 𝑥  are shown in [?]. that the strength of field and 

its variance are equal for 𝑥 > 5𝜆, 
 

5   Average Diffracted Field and Its variance 
 

The average diffracted field can be written by taking the statistical average of equation as,  

 < 𝐸𝑑 >= 𝐴(1+< 𝑒𝑖𝑘𝑎𝑏 >)
𝑒 𝑖𝑘𝑟

 𝑘𝑟
+ 𝑂(𝑘

−3

2  (11) 
 

where the expected term < 𝑒𝑖𝑘𝑎𝑏 > can be calculated, by using exponential distribution, as 

 

 < 𝑒𝑖𝑘𝑎𝑏 >=  ‍
∞

−∞
𝑒𝑖𝑘𝑎𝑏 𝑃𝑏(𝑏)𝑑𝑏 = 𝜆  ‍

∞

0
𝑒(−𝜆+𝑖𝑘𝑎 )𝑏𝑑𝑏 =

1

1−𝑖𝑘𝑎 <𝑏>
 (12) 

 

hence, the average diffracted field is  

 < 𝐸𝑑 >= 𝐴(
2−𝑖𝑘𝑎 <𝑏>

1−𝑖𝑘𝑎 <𝑏>

𝑒 𝑖𝑘𝑟

 𝑘𝑟
+ 𝑂(𝑘

−3

2
) (13) 

 
The variance of diffracted field is given below. 
 

 𝑣𝑎𝑟(𝐸𝑑) = |𝐴|2(
𝑘2𝑎2<𝑏>2

1+𝑘2𝑎2<𝑏>2)
1

𝑘𝑟
 (14) 

 

consider 𝜙𝑖 = 𝜋/4, then for by increasing < 𝑏 >, the average length of strip, a delta function comes out in the 

directions of incident and reflected wave. This is due to the fact that for large average width strip that can model the 

diffracted field as field radiated by perfectly conducting plate having slowly decaying exponentially distributed 
surface current density with travelling phase. The variance of diffracted field is zero in the directions of incident and 

reflected wave. 
 

6   Correlation between Reflected and Diffracted fields 
 

The correlation between the reflected and diffracted fields < 𝐸𝑟𝐸𝑑 >, is calculated as 
 

 < 𝐸𝑟𝐸𝑑 >= 𝐴∗𝑅𝐸0𝑒
𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) 𝑒

−𝑖𝑘𝑟

 𝑘𝑟
𝑢(𝑥 ) < (1 + 𝑒−𝑖𝑘𝑎𝑏 )(1 − 𝑢(𝑥 − 𝑏) > (15) 

 

where 𝑥 = 𝑥 − 𝑦cot𝜙𝑟 . The averaged term in the above expression can be calculated as, 

 

< (1 + 𝑒−𝑖𝑘𝑎𝑏 )(1 − 𝑢(𝑥 − 𝑏)) >= 1+< 𝑒−𝑖𝑘𝑎𝑏 > −< 𝑢(𝑥 − 𝑏) > −< 𝑒−𝑖𝑘𝑎𝑏 𝑢(𝑥 − 𝑏) > (16) 
 

where  

 < 𝑒−𝑖𝑘𝑎𝑏 >=
1

1+𝑖𝑘𝑎 <𝑏>
 (17) 

  

 < 𝑢(𝑥− 𝑏) >= 1 − 𝑒𝜆𝑥  (18) 
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 < 𝑢(𝑥− 𝑏) > −< 𝑒−𝑖𝑘𝑎𝑏 𝑢(𝑥 − 𝑏) >=
1−𝑒𝜆−𝑖𝑘𝑎 𝑥 

1+𝑖𝑘𝑎 <𝑏>
 (19) 

 using values of the averages in above equation, the expression for covariance of 𝐸𝑟  and 𝐸𝑑  can be written as  
 

 𝑐𝑜𝑣(𝐸𝑟𝐸𝑑) = 𝐴∗𝑅𝐸0𝑒
𝑖𝑘𝑟 cos  𝜙𝑟−𝜙 𝑒

𝜆𝑥

 𝑘𝑟

 𝑒−𝑖𝑘𝑎 𝑥 −1 

1+𝑖𝑘𝑎 <𝑏>
𝑢(x) (20) 

 

The average scattered field, sum of average diffracted and average reflected field, can be written by using the above 

equations  

 < 𝐸𝑧
𝑠 >= 𝑅𝐸0𝑒

𝑖𝑘𝑟 cos  𝜙𝑟−𝜙 𝑒𝜆𝑥 𝑢(x ) + 𝐴(
2−𝑖𝑘𝑎 <𝑏>

1−𝑖𝑘𝑎 <𝑏>
)
𝑒 𝑖𝑘𝑟

 𝑘𝑟
+ 𝑂(𝑘

−3

2
) (21) 

 

The variance of scattered field in terms of variances and covariances of reflected and diffracted fields could be 

written as  
 

 𝑣𝑎𝑟(𝐸𝑧
𝑠) = 𝑣𝑎𝑟(𝐸𝑟) + 𝑣𝑎𝑟(𝐸𝑑) + 2𝑅𝑐𝑜𝑣(𝐸𝑟 , 𝐸𝑑) (22) 

 

  

< 𝐸𝑧
𝑠 >= 𝐸0

2𝑒−𝜆𝑥 𝑢(𝑥 ) + |𝐴|2 𝑘2𝑎2<𝑏>2

1+ 𝑘2𝑎2<𝑏>2 

1

𝑘𝑟
+ 2𝑅(𝐴∗𝑅𝐸0𝑒

𝑖𝑘𝑟 cos (𝜙𝑟−𝜙 𝑒−𝑖𝑘𝑎 𝑥 

 𝑘𝑟
𝑒𝜆 𝑥  (

 𝑒−𝑖𝑘𝑎 𝑥 −1 

1+𝑖𝑘𝑎 <𝑏>
)𝑢(𝑥 ̃)) (23) 

 

The above average scattered field (< 𝐸𝑧
𝑠 >=< 𝐸𝑟 > +< 𝐸𝑑 >) can be transformed from perfectly electric 

conducting case to perfectly electromagnetic conducting case by the following theory. The Concept of PEMC 

introduced by Lindell and Sihvola [3, 4] is a generalization of both PEC and PMC. An analytic theory for the 

electromagnetic scattering by a perfectly electromagnetic conducting random width strip, is developed. The PEMC 

medium characterized by a single scalar parameter 𝑀, which is the admittance of the surface interface, where 

𝑀 = 0 reduces the PMC case and the limit 𝑀 → ±∞ corresponds to the perfect electric conductor (PEC) case. The 

theory allows for the occurrence of cross-polarized fields in the scattered wave in the scattered wave, a feature 

which does not exist in standard scattering theory. This means that PEC and PMC are the limiting cases, for which 
there is no cross-polarized component. Because the PEMC medium does not allow electromagnetic energy to enter, 

an interface of such a medium behaves as an ideal boundary to the electromagnetic field. At the surface of a PEMC 

media, the boundary conditions between PEMC medium and air with unit normal vector 𝑛, are of the more general 

form. Because tangential components of the 𝐸 and 𝐻 fields are continuous at any interface of two media, one of 

the boundary conditions for the medium in the air side is 𝑛 × (𝐻 + 𝑀𝐸) = 0, because a similar term vanishes in the 

PEMC-medium side. The other condition is based on the continuity of the normal component of the 𝐷 and 𝐵 

fields which gives another boundary condition as 𝑛. (𝐷 −𝑀𝐵) = 0. 
 

Here, PEC boundary may be defined by the conditions  

 𝑛 × 𝐸 = 0,        𝑛. 𝐵 = 0 (24) 
 

While PMC boundary may be defined by the boundary conditions  

 𝑛 × 𝐻 = 0,        𝑛. 𝐷 = 0 (25) 

 

where 𝑀 denotes the admittance of the boundary which is characterizes the PEMC. For 𝑀 = 0, the PMC case is 

retrieved, while the limit 𝑀 → ±∞ corresponds to the PEC case. Possibilities for the realization of a PEMC 

boundary have also been studied [5]. 
 

It has been observed theoretically that a PEMC material acts as a perfect reflector of electromagnetic waves, but 
differs from the PEC andthe PMC in that the reflected wave has a cross-polarized component. 
 

The duality transformations of perfectly electric condutor (PEC) to PEMC have been studied by many researchers 

[3, 4, 5, 6, 7, 8, 9]. Here we present an analytic scattering theory for a PEMC step, which is a generalization of the 
classical scattering theory. 
 

Applying a duality transformation which is known to transform a set of fields and sources to another set and the 

medium to another one. In its most general form, the duality transformation can be defined as a linear relation 

between the electromagnetic fields. The effect of the duality transformation can be written by the following special 
choice of transformation parameters:  
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𝐸𝑑
𝐻𝑑

 =  
𝑀𝜂0 𝜂0
−1

𝜂0
𝑀𝜂0

  𝐸
𝐻

  (26) 

 has the property of transforming PEMC to PEC, while  

  𝐸
𝐻

 =
1

(𝑀𝜂0)2+1
 
𝑀𝜂0 −𝜂0
1

𝜂0
𝑀𝜂0

  
𝐸𝑑
𝐻𝑑

  (27) 

 has the property of transforming PEC to PEMC [4]. 
 

Following the above relations [3], the transformed equations become as  
 

 𝐸𝑟 = −
1

𝑀2𝜂0
2+1

 (−1 + 𝑀2𝜂0
2)𝐸𝑖 + 2𝑀𝜂0𝑢𝑧 × 𝐸𝑖  (28) 

 

 𝐸𝑠𝑑 = −(𝑀𝜂0𝐸𝑠 + 𝜂0𝐻𝑠) (29) 

  

 𝐻𝑠𝑑 = −
1

𝜂0
𝐸𝑠 + 𝑀𝜂0𝐻𝑠  (30) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 𝑀𝜂0𝐸𝑠𝑑 − 𝜂0𝐻𝑠𝑑   (31) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0

2𝐻𝑠  (32) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0𝐸𝑠  (33) 

 

Where 𝐸𝑠, 𝐻𝑠  are transformed pemc average fields and 𝐸𝑠𝑑 , 𝐻𝑠𝑑  are average scattered elecric and magnetic fields 

respectively. 
 

This means that, for a linearly polarized incident field 𝐸𝑖 , the reflected field from a such a boundary has a both 

co-polarized component, while 𝑢𝑧 × 𝐸𝑖  is a cross-polarized component, in the general case. For the PMC and PEC 

special cases (𝑀 = 0 and 𝑀 = ±∞ respectively), the cross-polarized component vanishes. For the special PEMC 

case 𝑀 =
1

𝜂0
, such that 

 (𝐸𝑟 = −𝑢𝑧 × 𝐸𝑖) (34) 
 

which means that the reflected field appears totally cross-polarized. It is obvious theoretically that a PEMC material 

acts as a perfect reflector of electromagnetic waves, but differs from the PEC (𝐸𝑟 + 𝐸𝑖) = 0 and 𝐻𝑟 = 𝐻𝑖) and 

PMC ( 𝐸𝑟 = 𝐸𝑖  and 𝐻𝑟 + 𝐻𝑖 = 0) in that the reflected wave has a cross-polarized component. 
 

7  Concluding remarks 
 

In this work, a plane wave scattering by perfectly electromagnetic conducting random width strip is studied. The 

theory provides explicit analytical formulas for the electric and magnetic field. An other formulla has been derived 

for the relative contributions to the scattered fields of the co-polarized and the crosspolarized fields depend on 

parameter 𝑀. The cross-polarized scattered fields vanish in the PEC and PMC cases, and are maximal for 𝑀 = ±1. 

In the general case,the reflected wave has both a co-polarized and a cross-polarized component. The above 

transformed solution presents an analytical theory for the scattering by perfectly electromagnetic conducting 

random width strip. It is clear from the above discussion that for 𝑀 → ∞ and 𝑀 → 0 correspond to the PEC and 

PMC respectively. Moreover, for 𝑀 = ±1 the medium reduces to PEMC.  
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