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Abstract 
 

An analytic theory for the electromagnetic scattering from a randomly placed perfectly electromagnetic conducting 

(PEMC) half plane is developed, using the duality transformation which was introduced by Lindell and Sihvola. 
The theory allows for the occurrence of cross-polarized fields in the scattered wave, a feature which does not exist 

in standard scattering theory. This is why the medium is named as PEMC. PEMC medium can be transformed to 

PEC or PMC media. As an application, plane wave reflection from a planar interface of air and PEMC medium is 

studied. PEC and PMC are the limiting cases, where there is no cross-polarized component 
 

1  Introduction 
 

The problem we are considering, i.e., scattering from half plane, strip or grating are very well known in the field of 
electromagnetics [1]. Our aim is not to resolve these problems but introduce few random parameters in these 

planner boundaries. For perfectly electric conducting cases, a complete solution exists in literature, based on the 

following equations and conditions, first time the half plane problem was solved exactly by A. Sommerfeld in 1896 

[2], Later, the same solution was obtained by several different methods, [3, 4] and to study the effects of the 
stochastic nature of these boundaries on the scattered field. Before we examine the random boundaries, i.e., 

scatterers with random parameters is instructive to examine the behavior of randomly placed half plane, because in 

two dimensional planner perfectly conducting boundaries, with sharp edges. In this paper, the solution for the 
following average scattered field for pec case has been tranformed to randomly placed pemc half plane. 
 

2  Formulation of The Problem 
 

Consider a perfectly conducting plane is located at (𝑥 > 0,𝑦 = 0) Fig.(1) and illuminated by an incident plane 

wave. It is convenient to resolve the fields into two modes: 𝐸-wave and 𝐻-wave, and solve the problem associated 
with each mode separately. 
 

For convenience, a scalar function 𝑈 is introduced such that  
 

 𝑈(𝑥,𝑦) = {𝐸𝑧 ,𝑓𝑜𝑟𝐸 − 𝑤𝑎𝑣𝑒𝐻𝑧 ,𝑓𝑜𝑟𝐻 −𝑤𝑎𝑣𝑒. (1) 
 

 The plane wave is specified for all (𝑟,𝜙), 
 

 𝑈(𝑟,𝜙) = 𝑒𝑖𝑘𝑟 cos (𝜙 𝑖−𝜙) (2) 
  

 𝑈𝑇 = 0, (3) 

 𝐻-wave for 𝑥 > 0 and 𝑦 = 0: 
 

 
∂𝑈𝑇

∂𝑦
= 0, (4) 

 The edge condition for 𝑈𝑇, 

 

 
∂𝑈𝑇

∂𝑥
,
∂𝑈𝑇

∂𝑦
= 𝑂(𝑟−

1

2 ), (5) 

 

 as 𝑟 → 0 Finally, thhe radiation conditions for the scattered field 𝑈 as 𝑟 approaches to infinity. 
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The total scattered field in far zone is given below.  
 

 
 

Figure  1: scattering by randomly placed pec half plane 

    

 𝑈(𝑟,𝜙) = 𝑅𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) + 𝐶
𝑒 𝑖𝑘𝑟

 𝑘𝑟
𝑈𝑖(𝑟 = 0) (6) 

                             

                              where 𝐶 = [𝑐𝑠𝑐
(𝜙 𝑖−𝜙)

2
− 𝑐𝑠𝑐

(𝜙𝑟+𝜙)

2
]

𝑒
𝑖
𝜋
4

2 2𝜋
 

 

Consider the geometry as sketched in Fig.(1), where a perfectly conducting half plane is located at 𝑥 > 𝑥𝑜  and 

𝑦 = 0. Random placement of this half plane is due to the edge location or 𝑥𝑜  be random variable with certain 
probability density function. The main interes is in the scattering of plane wave through this geometry. Due to 

random 𝑥𝑜  the scattered field is also random, and in the statistics of this field. 
 

Consider a simple displaced half plane field; later the statistics of this field is calculate . The form of the total field 
will be similar to basic equation with little modification, 

 

 𝑈𝑇(𝑟,𝜙) = 𝐹(𝜉′𝑖)𝑈𝑖(𝑟′,𝜙) + 𝐹(𝜉′𝑟 )𝑈𝑟(𝑟′,𝜙) (7) 
 

where 𝑟′ =  (𝑥 − 𝑥𝑜)2 + 𝑦2, only the far zone solution is of interest. The scattered field could be separated in two 

parts Geometrical Optic Field and Keller,s Diffracted Field, i.e.,  
 

 𝑈(𝑟,𝜙) = 𝑈𝑔(𝑟,𝜙) + 𝑈𝑑(𝑟,𝜙) (8) 
 

The Geometric Optic Field is given by 
 

 𝑈𝑔(𝑟,𝜙) = 𝑓(𝑟,𝜙)𝑈𝑟(𝑟,𝜙) (9) 
 

where 𝑓(𝑟,𝜙)𝑜𝑟𝑓(𝑥,𝑦) is either 0 or 1. The function 𝑓(𝑥,𝑦) = 1 when point is in the shaded region, as shown 

in the 1 and 𝑓(𝑥,𝑦) = 0 when point is outside the region. In this case the function is replaced by unit step function, 
 

 𝑓(𝑥,𝑦) = 𝑢(𝑥 − 𝑥𝑜) (10) 

 

where 𝑢(𝑥) is defined as  

 𝑢(𝑦) = {1, 𝑖𝑓  𝑦 > 0  
 

and 𝑥 = 𝑥 − 𝑦𝑐𝑜𝑡𝜙𝑟 . The second part of the scattered field which is due to the edge diffraction will be, 

 

 𝑈𝑑(𝑥,𝑦) = 𝐺(𝑘 (𝑥 − 𝑥𝑜)2 + 𝑦2)(𝜒𝑖 + ℝ𝜒𝑟)𝑈𝑖(𝑟 = 𝑥𝑜) + 𝑂(𝑘
−3

2 ) (11) 
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For 𝐸-wave the 𝑧-component of the scattered field will become,  
 

 𝐸𝑧
𝑠(𝑥,𝑦) = 𝐸𝑟(𝑥,𝑦) + 𝐸𝑑(𝑥,𝑦) (12) 

 

where 𝐸𝑟(𝑥,𝑦) = 𝑈𝑔(𝑥,𝑦) and 𝐸𝑑(𝑥,𝑦) = 𝑈𝑑(𝑥, 𝑦), for 𝑅 = −1, this implies  

 

 𝐸𝑟(𝑥,𝑦) = 𝑢(𝑥 − 𝑥𝑜)𝑈𝑟(𝑥,𝑦) (13) 
  

where 𝑈𝑟(𝑥,𝑦) = 𝑅𝑒𝑖𝑘 𝑥
2+𝑦2

cos(𝜙𝑟 −𝜙) 

 

The diffracted part is given as,  

 𝐸𝑑(𝑥, 𝑦) = 𝐺(𝑘 (𝑥 − 𝑥𝑜)2 + 𝑦2)(𝜒𝑖 + 𝑅𝜒𝑟)𝑈𝑖(𝑟 = 𝑥𝑜) + 𝑂(𝑘
−3

2 ) =

1

2
 

𝑖

2𝜋
(𝜒𝑖 + 𝑅𝜒𝑟 )𝑒𝑖𝑘 𝑥0cos (𝜙 𝑖) 𝑒

𝑖𝑘 (𝑥−𝑥𝑜 )2+𝑦2

𝑘 (𝑥−𝑥𝑜)2+𝑦2
 (14) 

  

When 𝑟 >> 𝑥𝑜 , far from edge , it can be approximated 

 

 
𝑒
𝑖𝑘𝑟  (𝑥−𝑥𝑜 )2+𝑦2

 𝑘 (𝑥−𝑥𝑜)2+𝑦2

≅
𝑒 𝑖𝑘𝑟

 𝑘𝑟
𝑒−𝑖𝑘𝑥𝑜cos𝜙 𝑒

𝑖 (𝑥−𝑥𝑜 )2+𝑦2

𝑘 (𝑥−𝑥𝑜)2+𝑦2
≅

𝑒 𝑖𝑘𝑟

 𝑘𝑟
𝑒−𝑖𝑘𝑥𝑜 𝑐𝑜𝑠 (𝜙 𝑖) (15) 

  

where again we can not neglect exponential term otherwise there will be phase error. 

 

 𝐸𝑑(𝑥, 𝑦) ≅ 𝐶𝑒𝑖𝑘𝑎 𝑥𝑜
𝑒 𝑖𝑘𝑟

 𝑘𝑟
 (16) 

 

where 𝑎 = cos(𝜙𝑖) − cos(𝜙𝑟), and 

𝐶 =
1

2
 

𝑖

2𝜋
 𝜒𝑖 + 𝑅𝜒𝑟 , 0 < 𝜙𝑖 < 𝜋 

The average scattered field is the sum of average reflected and diffracted field i.e., 

 

 < 𝐸𝑧
𝑠 >=< 𝐸𝑟 > +< 𝐸𝑑 > (17) 

 
The variance of scattered field is given by, 

 

 𝑣𝑎𝑟(𝐸𝑧
𝑠) = 𝑣𝑎𝑟(𝐸𝑟) + 𝑣𝑎𝑟(𝐸𝑑) + 𝑐𝑜𝑣(𝐸𝑟𝐸𝑑) + 𝑐𝑜𝑣(𝐸𝑑𝐸𝑟) (18) 

 

where 𝑐𝑜𝑣(𝑋𝑌) is the covariance of 𝑋 and 𝑌 defined by the equation, 

 

 𝑐𝑜𝑣(𝑋𝑌) =< (𝑋−< 𝑋 >)(𝑌−< 𝑌 >)∗ > (19) 
 

n order to calculate the second order statistics of the scattered field, i.e., its average and variance, we need to 

calculate the average reflected field, average diffracted field, their variances and the correlation between reflected 

and diffracted fields. In following section we calculate them successively. 
 

3    Average Reflected Field and its Variance 
 

Obviously, the reflected field at point 𝑃(𝑥,𝑦) is due to reflection from perfectly conducting plane. If trace back 

from 𝑃(𝑥,𝑦) on the 𝑥𝑧-plane along the reflected angle, suppose 𝑃′(𝑥,𝑦) from where the reflection is obtained. 

Since 𝑥𝑜  is random or exact location of edge is unknown, there is a chance or probability that point 𝑃′(𝑥,𝑦) lies on 

plane or does not lie on the plane. So average reflected field will be the reflected 𝑈𝑟(𝑥,𝑦) multiplied by the 

probability that 𝑃′(𝑥,𝑦) lies on plane.Taking average on both sides of this equation, 
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 < 𝐸𝑟(𝑥,𝑦) >=< 𝑢(𝑥 − 𝑥𝑜) > 𝑈𝑟(𝑥,𝑦) (20) 

 while  

 < 𝑢(𝑥 − 𝑥𝑜) >=  
∞

−∞
𝑢(𝑥 − 𝑥𝑜)𝑃𝑥𝑜𝑑𝑥𝑜 =  

∞

−∞
𝑃𝑥𝑜𝑑𝑥𝑜  (21) 

 Variance of this field can be calculated as, 

 

 𝑣𝑎𝑟(𝐸𝑟) =< |𝐸𝑟|2 > −| < 𝐸𝑟 > |2 (22) 

 

Let us take exponentially distributed 𝑥0, for simplicity, whose probability density function is defined as 

 

 < 𝑢(𝑥 − 𝑥𝑜) >= 𝜆  
𝑥 

0
𝑒−𝜆(𝑥𝑜)𝑑𝑥𝑜 = 1 − 𝑒−𝜆(𝑥 ) (23) 

  

 𝑣𝑎𝑟(𝐸𝑟) = 𝑒−𝜆(𝑥 )(1 − 𝑒−𝜆(𝑥 )) (24) 
 

It can be seen that average reflected is still a plane wave travelling in the 𝜙𝑟  direction, whose strength increases 

exponentially to unity(for 𝜙 > 𝜙𝑟) as moving from 𝑥 > 𝑦cot𝜙𝑟  towards positive axis, in any plane parallel to 

𝑥𝑧-plane at depth y. The strength of average reflected field and its variance 1 at any plane parallel to𝑥𝑧-plane at 

depth y for 𝑥 ≥ 0. 
 

4  Average Diffracted Field and its Variance 
 

The approximate diffracted field, due to edge effect, which is same as the field radiated by edge source, placed at 

𝑥𝑜 , in the far zone. Since its location is random, the average field radiated by this source will be, 
 

 < 𝐸𝑑 𝑥,𝑦 >= 𝐶 < 𝑒𝑖𝑘𝑎 𝑥𝑜 >
𝑒 𝑖𝑘𝑟

 𝑘𝑟
 (25) 

 

                             where 𝐶 =
1

2
 

𝑖

2𝜋
(𝜒𝑖 + 𝑅𝜒𝑟) 

 

and the average term in above equation is given by 

 

 < 𝑒𝑖𝑘𝑎 𝑥𝑜 >=
1

1−𝑖𝑘<𝑥𝑜>
(cos𝜙𝑖 − cos𝜙) (26) 

 

where < 𝑥𝑜 > is the average value of 𝑥𝑜 . The average diffracted field will become  

 < 𝐸𝑑(𝑥,𝑦) >= 𝐶
𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

1−𝑖𝑘<𝑥𝑜>(𝑐𝑜𝑠𝜙 𝑖−cos𝜙)
 (27) 

  

  𝐸𝑑 𝑥,𝑦  = 𝐶
𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

1−𝑖𝑘  𝑥𝑜  (cos𝜙 𝑖−cos𝜙)
 (28) 

       

         The variance of this field is defined as 

 

 𝑣𝑎𝑟(𝐸𝑑) =< |𝐸𝑑 |2 > +| < 𝐸𝑑 > |2 (29) 
  

 𝑣𝑎𝑟(𝐸𝑑) =
𝑘<𝑥𝑜>(𝑐𝑜𝑠𝜙 𝑖−cos𝜙)2

1+(𝑘<𝑥𝑜>(𝑐𝑜𝑠 𝜙 𝑖−cos𝜙))2 ×
|𝐶|2

𝑘𝑟
 (30) 

  

5  Covariance between Reflected and Diffracted Fields 
 

The covariance between two random variables is defined as  
 

 𝑐𝑜𝑣(𝐸𝑟𝐸𝑑) =< 𝐸𝑟𝐸𝑑∗ > −< 𝐸𝑟 >< 𝐸𝑑 >∗ (31) 
 

where < 𝐸𝑟𝐸𝑑∗ > is the cross correlation between reflected and diffracted fields and its expectation be written as 
 

  𝐸𝑟𝐸𝑑∗ = 𝑅𝐶∗𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) 𝑒
−𝑖𝑘𝑟

 𝑘𝑟
 𝑒−𝑖𝑘𝑎 𝑥𝑜𝑢(𝑥 − 𝑥𝑜)  (32) 
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where  

  𝑒−𝑖𝑘𝑎 𝑥𝑜𝑢(𝑥 − 𝑥𝑜) =
1−𝑒 (−𝜆−𝑖𝑘𝑎 )𝑥 

(1+𝑖𝑘𝑎 <𝑥𝑜>)
 (33) 

  

 < 𝐸𝑟𝐸𝑑∗ >= 𝑅𝐶∗𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) 𝑒
−𝑖𝑘𝑟

 𝑘𝑟

1−𝑒 (−𝜆−𝑖𝑘𝑎 )𝑥 

1+𝑖𝑘𝑎 <𝑥𝑜>
 (34) 

 

and 
 

 𝑐𝑜𝑣(𝐸𝑟𝐸𝑑∗) = 𝑒−𝜆𝑥 (1 − 𝑒−𝑖𝑘𝑎 𝑥 )𝑅𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) < 𝐸𝑑 >∗ 𝑢(𝑥 ) (35) 

 
 

 𝑣𝑎𝑟(𝐸𝑧
𝑠) = 𝑣𝑎𝑟(𝐸𝑟) + 𝑣𝑎𝑟(𝐸𝑑) + 2ℜ(𝑐𝑜𝑣(𝐸𝑟𝐸𝑑)) (36) 

 

Now putting the values, we obtain the averaged scattered field as, 

 

  𝐸𝑧
𝑠 = (1 − 𝑒−𝜆𝑥 )𝑢(𝑥 )𝑅𝑒𝑖𝑘 𝑥

2+𝑦2
cos(𝜙𝑖 −𝜙) + 𝐶

𝑒 𝑖𝑘𝑟

 𝑘𝑟

1

1−𝑖𝑘<𝑥𝑜>(𝑐𝑜𝑠𝜙 𝑖−cos𝜙)
 (37) 

 

The expression for variance of scattered field 𝐸𝑧
𝑠 field can be written as, 

 

 𝑣𝑎𝑟(𝐸𝑧
𝑠) =

𝑒−𝜆𝑥 (1 − 𝑒−𝜆𝑥 ) +
(𝑘<𝑥𝑜>𝑎)2

1+(𝑘<𝑥𝑜>𝑎)2 ×
|𝐶|2

𝑘𝑟
+ 2ℜ(𝐶∗𝑒−𝜆𝑥 (1 − 𝑒−𝜆𝑥 )𝑅𝑒𝑖𝑘𝑟 cos (𝜙𝑟−𝜙) 𝑒

−𝑖𝑘𝑟

 𝑘𝑟

1

1+𝑖𝑘𝑎 <𝑥𝑜>
𝑢(𝑥 ) (38) 

 

 

 < 𝐸𝑑(𝑥,𝑦) >= 𝐶 < 𝑒𝑖𝑘𝑎 𝑥𝑜 >
𝑒 𝑖𝑘𝑟

 𝑘𝑟
 (39) 

 

where 𝐶 =
1

2
 

𝑖

2𝜋
(𝜒𝑖 + 𝑅𝜒𝑟) 

and the average term in above equation is given by 

 

 < 𝑒𝑖𝑘𝑎 𝑥𝑜 >=
1

1−𝑖𝑘<𝑥𝑜>(𝑐𝑜𝑠 𝜙 𝑖−cos𝜙)
 (40) 

 

where < 𝑥𝑜 > is the average value of 𝑥𝑜 . The average diffracted field will become 
 

 < 𝐸𝑑(𝑥,𝑦) >= 𝐶(
𝑒 𝑖𝑘𝑟

 𝑘𝑟
)

1

1−𝜄𝑘<𝑥𝑜>(𝑐𝑜𝑠𝜙 𝑖−𝑐𝑜𝑠𝜙 )
 (41) 

 

The variance of this field is defined as 

 

 𝑣𝑎𝑟(𝐸𝑑) =< |𝐸𝑑 |2 > +| < 𝐸𝑑 > |2 (42) 

 

The above average scattered field can be transformed from perfectly electric conducting case to perfectly 

electromagnetic conducting case by the following theory. The Concept of PEMC introduced by Lindell and Sihvola 
[3, 4] is a generalization of both PEC and PMC. An analytic theory for the electromagnetic scattering from a PEMC 

plane where a line source has been placed randomly, is developed. The PEMC medium characterized by a single 

scalar parameter 𝑀, which is the admittance of the surface interface, where 𝑀 = 0 reduces the PMC case and the 

limit 𝑀 → ±∞ corresponds to the perfect electric conductor (PEC) case. The theory allows for the occurrence of 

cross-polarized fields in the scattered wave in the scattered wave, a feature which does not exist in standard 

scattering theory. This means that PEC and PMC are the limiting cases, for which there is no cross-polarized 

component. Because the PEMC medium does not allow electromagnetic energy to enter, an interface of such a 
medium behaves as an ideal boundary to the electromagnetic field. At the surface of a PEMC media, the boundary 

conditions between PEMC medium and air with unit normal vector 𝑛, are of the more general form. Because 

tangential components of the 𝐸 and 𝐻 fields are continuous at any interface of two media, one of the boundary 

conditions for the medium in the air side is 𝑛 × (𝐻 + 𝑀𝐸) = 0 , because a similar term vanishes in the 

PEMC-medium side.  
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The other condition is based on the continuity of the normal component of the 𝐷 and 𝐵 fields which gives another 

boundary condition as 𝑛. (𝐷 −𝑀𝐵) = 0. 
 

Here, PEC boundary may be defined by the conditions  
 

 𝑛 × 𝐸 = 0,        𝑛.𝐵 = 0 (43) 
 

 While PMC boundary may be defined by the boundary conditions  
 

 𝑛 × 𝐻 = 0,        𝑛.𝐷 = 0 (44) 
 

where 𝑀 denotes the admittance of the boundary which is characterizes the PEMC. For 𝑀 = 0, the PMC case is 

retrieved, while the limit 𝑀 → ±∞ corresponds to the PEC case. Possibilities for the realization of a PEMC 

boundary have also been studied [5]. 
 

It has been observed theoretically that a PEMC material acts as a perfect reflector of electromagnetic waves, but 

differs from the PEC andthe PMC in that the reflected wave has a cross-polarized component. 
 

The duality transformations of perfectly electric condutor (PEC) to PEMC have been studied by many researchers 
[3, 4, 5, 6, 7, 8, 9]. Here we present an analytic scattering theory for a PEMC step, which is a generalization of the 

classical scattering theory. 
 

Applying a duality transformation which is known to transform a set of fields and sources to another set and the 

medium to another one. In its most general form, the duality transformation can be defined as a linear relation 

between the electromagnetic fields. The effect of the duality transformation can be written by the following special 
choice of transformation parameters:  
 

  
𝐸𝑑
𝐻𝑑

 =  
𝑀𝜂0 𝜂0
−1

𝜂0
𝑀𝜂0

  𝐸
𝐻

  (45) 

 

 has the property of transforming PEMC to PEC, while  
 

  𝐸
𝐻

 =
1

(𝑀𝜂0)2+1
 
𝑀𝜂0 −𝜂0
1

𝜂0
𝑀𝜂0

  
𝐸𝑑
𝐻𝑑

  (46) 

 

 has the property of transforming PEC to PEMC [4]. 
 

Following the above relations [3], the transformed equations become as  
 

 𝐸𝑟 = −
1

𝑀2𝜂0
2+1

 (−1 + 𝑀2𝜂0
2)𝐸𝑖 + 2𝑀𝜂0𝑢𝑧 × 𝐸𝑖  (47) 

 

 𝐸𝑠𝑑 = −(𝑀𝜂0𝐸𝑠 + 𝜂0𝐻𝑠) (48) 
  

 𝐻𝑠𝑑 = −
1

𝜂0
𝐸𝑠 + 𝑀𝜂0𝐻𝑠  (49) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 𝑀𝜂0𝐸𝑠𝑑 − 𝜂0𝐻𝑠𝑑   (50) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0

2𝐻𝑠  (51) 

 

 𝐸𝑠 =
1

(𝑀𝜂0)2+1
 ((𝑀𝜂0)2 − 1)𝐸𝑠 − 2𝑀𝜂0𝐸𝑠  (52) 

 

Where 𝐸𝑠, 𝐻𝑠  are transformed pemc average fields and 𝐸𝑠𝑑 , 𝐻𝑠𝑑  are average scattered elecric and magnetic fields 

respectively. 
 

This means that, for a linearly polarized incident field 𝐸𝑖 , the reflected field from a such a boundary has a both 

co-polarized component, while 𝑢𝑧 × 𝐸𝑖  is a cross-polarized component, in the general case. For the PMC and PEC 

special cases (𝑀 = 0 and 𝑀 = ±∞ respectively), the cross-polarized component vanishes.  
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For the special PEMC case 𝑀 =
1

𝜂0
, such that 

 

 (𝐸𝑟 = −𝑢𝑧 × 𝐸𝑖) (53) 

 

which means that the reflected field appears totally cross-polarized. It is obvious theoretically that a PEMC material 

acts as a perfect reflector of electromagnetic waves, but differs from the PEC (𝐸𝑟 + 𝐸𝑖) = 0 and 𝐻𝑟 = 𝐻𝑖) and 

PMC ( 𝐸𝑟 = 𝐸𝑖  and 𝐻𝑟 + 𝐻𝑖 = 0) in that the reflected wave has a cross-polarized component. 
 

6  Concluding remarks 
 

In this work, a plane wave scattering by randomly placed perfectly electromagnetic conducting half plane is studied. 

The theory provides explicit analytical formulas for the electric and magnetic field. An other formulla has been 

derived for the relative contributions to the scattered fields of the co-polarized and the crosspolarized fields depend 

on parameter 𝑀. The cross-polarized scattered fields vanish in the PEC and PMC cases, and are maximal for 

𝑀 = ±1. In the general case,the reflected wave has both a co-polarized and a cross-polarized component. The 

above transformed solution presents an analytical theory for the scattering by randomly placed perfectly 

electromagnetic conducting half plane. It is clear from the above discussion that for 𝑀 → ∞  and 𝑀 → 0 

correspond to the PEC and PMC respectively. Moreover, for 𝑀 = ±1 the medium reduces to PEMC.  
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