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Abstract 
 

An approximation method is introduced to analyze the problem of uniform and non-uniform beam. Using the 

differential equation of motion based on the Euler-Bernoulli thin beam equation. The natural frequencies of the 

beams can be approximate by the Eigen-value of general form of normal mode characteristic function. The 

Analytical method gives the approximate solution, but need a lot of effort on calculation. The Finite Element 
Methods is also convenience and popular. This paper studies the vibration analysis in the uniform and 

exponential cross section beam using the Galerkin’s method. The natural frequencies of the beam are determined 

and, the analysis results are compared to the result from FEM.  
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1. Introduction 
 

Vibration is an important factor in most of mechanical designs. Since, it may cause, partially or totally, damage in 

that mechanism. Experienced design engineer consider the possibility and cause of the vibration in the designed 
system e.g. engine, machine, building, bridge etc. The excitation might be any forces from environment e.g. wind, 

earthquake or forces from unbalanced of the machinery and, can be either periodical or random. The design 

engineer must avoid the resonance, lead to the unexpected damages, in the system which is caused by the equality 
of two frequencies that are frequency of excitation and natural frequency of the system. The vibration analysis of 

the system needs to be done in the design process. 
 

Most of the standard engineering practice to analyze beams with uniform or variable properties on the basis of 
Bernoulli-Euler beam theory. In reality, non-uniform beams are presence and the effect of shear distortion and 

rotary inertia are considered then Timoshenko beam theory is needed [1-2].  As the very advanced computational 

ability of the computer, the modal analysis can be easily done using the commercial Finite Element software. The 
analysis results from this software have very good performance in term of time saving and cost saving. Since, 

they help the manufactures to reduce the design lead time and reduce the enormous number of prototyping cost. 

However, the solution from the Finite Element Method is not the only one method has been studies. The static 

deflection of the non-uniform beam has been studied by several different approximation methods e.g. Eigen-
function expansion [3], series approximation [4], finite element method [5], transfer matrix method [6], manual 

approximation method [7], fourth order differential equation [8]. The FEM also has limitations on real-time 

application e.g. the vibration control because of its long calculation time. 
 

The vibration analysis using approximate analytical method for uniform beam is presented by several researchers 
[9-11]. This paper presents the vibration analysis of exponential cross section beam using the analytical method. 

The Galerkin’s approximation method [12] is applied. The results of the approximation method are compared to 

the results from the FEM.  
 

2. Model Condition and Governing Equation 
 

2.1. Model Condition  
 

The considered beams are a uniform cross-section beam and a non-uniform cross-section beam. The dimensions 

of uniform cross-section beam are 20 mm in width, 200 mm in length. 
 

______________ 
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The width of the non-uniform beam is increasing along the 200 mm length of beam and is equal to b(x) = 0.02e
4x

. 

Both are 2 mm thick. Material properties used in the analysis are Al-alloy 6061-0’s properties. Al-alloy 6061-0 

has Young’s Modulus (E) of 6.9×1010 N/m
2
 and density () of 2705 kg/m

3
. Fig.1 and Fig.2 illustrate shape of the 

beams. 

 
Figure 1 Top view of the uniform beam 

 
Figure 2 Top view of the non-uniform beam 

 

2.2. Governing Equation  
 

The differential equation of motion for a non-uniform Timoshenko beam subjected to distributed load f(x, t) and 
the static flexural deflection w(x, t) can be expressed as (Eq.1).  
 

𝜕2

𝜕𝑥2
 𝐸𝐼(𝑥)

𝜕2𝑤

𝜕𝑥2
 𝑥, 𝑡  + 𝜌𝐴 𝑥 

𝜕2𝑤

𝜕𝑡2
 𝑥, 𝑡 = 𝑓 𝑥, 𝑡    (Eq.1) 

 

Where E is Young’s modulus, A(x) is cross section area of the beam, I(x) is the moment of inertia of the beam 

cross section about y axis and 𝜌 is density. Note that the relationship between bending moment and deflection can 
be express by (Eq.2), using Euler-Bernoulli thin beam theory. 
 

𝑀 𝑥, 𝑡 = 𝐸𝐼 𝑥 
𝜕2𝑤

𝜕𝑡2 (𝑥, 𝑡)    (Eq.2) 

For the uniform beam (Eq.1) can be reduced to 
 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
 𝑥, 𝑡 + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
 𝑥, 𝑡 = 𝑓(𝑥, 𝑡)        (Eq.3) 

 

For the free vibration, f(x,t) = 0, the equation of motion is reduced to (Eq.4).  
 

𝑐2 𝜕4𝑤

𝜕𝑥4
 𝑥, 𝑡 +

𝜕2𝑤

𝜕𝑡2
 𝑥, 𝑡 = 0     (Eq.4)  

where  

    𝑐 =  
𝐸𝐼

𝜌𝐴
       (Eq.5) 

 

The equations of motion with respect to time and distance x can be rewritten by the method of separation of 

variables as shown in (Eq.6).  

𝑤 𝑥, 𝑡 = 𝑊(𝑥) ∙ 𝑇(𝑡)      (Eq.6) 
 

Substituting (Eq.6) into (Eq.4) and rearrange 
 

𝑐2

𝑊 𝑥 

𝜕4𝑊 𝑥 

𝜕𝑥4 = −
1

𝑇 𝑡 

𝜕2𝑇 𝑡 

𝜕𝑡2 = 𝑎′ = 𝜔2         (Eq.7) 
 

where 𝑎′ = 𝜔2 is a positive constant. (Eq.7) can be rewritten as two equations.  
 

𝑑4𝑊(𝑥)

𝑑𝑥4 − 𝛽4𝑊 𝑥 = 0    (Eq.8) 

  
𝑑2𝑇(𝑡)

𝑑𝑡2 + 𝜔2𝑇 𝑡 = 0               (Eq.9) 

b(x)=0.02e
4X
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where  

𝛽4 =
𝜔2

𝑐2 =
𝜌𝐴𝜔2

𝐸𝐼
     (Eq.10) 

 

where 𝜔  is natural frequency of vibration, 𝛽  is root of the characteristic function. The solution of (Eq.9) can be 

express as 

𝑇 𝑡 = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡    (Eq.11) 
 

where A and B are constant that can be found from the initial conditions. 

The normal mode or characteristic function, W(x), for uniform beam can be solved by assume 
 

 𝑊 𝑥 = 𝐶𝑒𝑠𝑥       (Eq.12) 

where C and s are constants, then 

        𝑊 𝑥 = 𝐶1𝑒
𝛽𝑥 + 𝐶2𝑒

−𝛽𝑥 + 𝐶3𝑒
𝑖𝛽𝑥 + 𝐶4𝑒

−𝑖𝛽𝑥                (Eq.13) 
 

and  𝐶1 , 𝐶2, 𝐶3 , 𝐶4 ,  are constant that can be found from the boundary conditions. 

For the non-uniform beam, the (Eq.1) is solved then,  
 

𝑊 𝑥 = 𝑒−2𝑥(𝐶1
′ 𝑒𝑎𝑥 + 𝐶2

′ 𝑒−𝑎𝑥 + 𝐶3
′ 𝑒𝑏𝑥𝑖 + 𝐶4

′ 𝑒−𝑏𝑥𝑖 )                              (Eq.14) 
 

where 𝐶1
′ , 𝐶2

′ , 𝐶3
′ , 𝐶4

′  are constant and 

  𝑎 = 0.1 400 + 34.3𝜔       (Eq.15) 

 𝑏 = 0.1 −400 + 34.3𝜔     (Eq.16) 
 

The natural frequencies of the beam are computed. 

𝜔 =  𝛽𝑙 2 
𝐸𝐼

𝜌𝐴𝑙4      (Eq.17) 

2.3 Boundary condition 
 

The models have been subjected to two different boundary conditions, fixed-fixed and fixed-free. 
 

2.3.1 Fixed-Fixed: 
 

Deflection and slope of the beam are equal to zero at both end of the beam. 
 

    𝑤 0 = 0,  
𝜕

𝜕𝑥
𝑤(0) = 0 

     𝑤 𝑙  = 0,   
𝜕

𝜕𝑥
𝑤(𝑙) = 0 

2.3.2 Fixed-Free: 
 

Deflection and slope at the fixed end are equal to zero. Bending moment and shear force at the free end is equal to 
zero. 

    𝑤 0 = 0,  
𝜕

𝜕𝑥
𝑤(0) = 0 

    𝐸𝐼
𝜕2𝑤

𝜕𝑥2 = 0,  
𝜕

𝜕𝑥
 𝐸𝐼

𝜕2𝑤

𝜕𝑥2
 = 0 

3. Solution  
 

3.1 Uniform cross-section beam 
 

The equation of motion (Eq.13) can be rewritten as (Eq.18). 
 

                   𝑤 𝑥 = 𝐶1
∗𝑐𝑜𝑠𝛽𝑥 + 𝐶2

∗𝑠𝑖𝑛𝛽𝑥 + 𝐶3
∗𝑐𝑜𝑠ℎ𝛽𝑥 + 𝐶4

∗𝑠𝑖𝑛ℎ𝛽𝑥  (Eq.18) 
 

Substitute the boundary condition of each condition in the equation of motion, the natural frequency of the beam 

can be solved. (Eq.19) and (Eq.20) represent the solution equations of fixed-fixed condition and fixed-free 
condition. [14-15] 

 𝑓 𝛽𝑙 = 𝑐𝑜𝑠𝛽𝑙 ∙ 𝑐𝑜𝑠ℎ𝛽𝑙 − 1     (Eq.19) 

 𝑓 𝛽𝑙 = 𝑐𝑜𝑠𝛽𝑙 ∙ 𝑐𝑜𝑠ℎ𝛽𝑙 + 1    (Eq.20) 

3.2 Non-uniform cross-section beam   
 

The equation of motion (Eq.14) can be rewrite as shown in (Eq.21). 
 

    𝑤 𝑥 = 𝑒−2𝑥(𝐶1
′′ cos 𝑎𝑥 + 𝐶2

′′ sin 𝑎𝑥 + 𝐶3
′′ cosh 𝑏𝑥 + 𝐶4

′′ sinh 𝑏𝑥)  (Eq.21) 
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Substitute the boundary condition of each condition in the equation of motion, the natural frequency of the beam 

can be solved. (Eq.22) and (Eq.23) represent the solution equations of fixed-fixed condition and fixed-free 

condition. 

−2𝐴 +  
𝐴2

𝐵
− 𝐵 𝑠𝑖𝑛𝐴𝑙𝑠𝑖𝑛ℎ𝐵𝑙 + 2𝐴𝑐𝑜𝑠𝐴𝑙𝑐𝑜𝑠ℎ𝐵𝑙 = 0    (Eq.22) 

[ 𝐴5 − 16𝐴 +  𝐴𝐵4 − 16𝐴 +  8𝐴3 + 32𝐴 +  −8𝐴𝐵2 + 32𝐴 + (24𝐴2𝐵 −
16𝐴2

𝐵
+ 16𝐴𝐵 

−𝐴2𝐵3 + 4𝐵2 + 𝐴4𝐵 +
4𝐴4

𝐵
)𝑠𝑖𝑛𝐴𝑙𝑠𝑖𝑛ℎ𝐵𝑙 + (2𝐴3𝐵2 + 32𝐴 + 8𝐴𝐵2 − 8𝐴3 − 64𝐴)𝑐𝑜𝑠𝐴𝑙𝑐𝑜𝑠ℎ𝐵𝑙 

+(
16𝐴3

𝐵
+ 16𝐴𝐵 − 4𝐴3𝐵)𝑠𝑖𝑛ℎ𝐵𝑙𝑐𝑜𝑠𝐴𝑙 + (−16𝐵2 − 16𝐴2 − 4𝐴2𝐵2 − 4𝐴4) 𝑠𝑖𝑛𝐴𝑙𝑐𝑜𝑠ℎ𝐵𝑙] = 0    (Eq.23) 

 

4. Result 
 

The natural frequency of the model can be found by solving for the roots of (Eq.8, Eq.9, Eq.11, and Eq.12) and 
can simply be solved by plot the equation. The roots of the equation can be read form the intersections of x-axis, 

illustrate by Figure 3(a)-6(a). Figure 3(b)-6(b) illustrate the example of mode shape of beam from FEM result.  
 

Table 1-4 compare the natural frequencies of the beams from approximation method and finite element method.  
 

 
Figure 3(a) Analysis result of uniform beam with fixed-fixed boundary condition 

 
Figure 3(b) Illustrate mode shape of mode 3 of uniform beam with fixed-fixed boundary condition from FEM 

 

 
Figure 4(a) Analysis result of uniform beam with fixed-free boundary condition 
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Figure 4(b) Illustrate mode shape of mode 3 of uniform beam with fixed-free boundary condition from FEM 

 

 
Figure 5(a) Analysis result of non-uniform beam with fixed-fixed boundary condition 

 
Figure 5(b) Illustrate mode shape of mode 2 of non-uniform beam with fixed-fixed boundary condition from 

FEM  

 
Figure 6(a) Analysis result of non-uniform beam with fixed-free boundary condition 
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Figure 6(b) Illustrate mode shape of mode 2 of non-uniform beam with fixed-free boundary condition from 

FEM 
 

Table 1 Natural frequency of the uniform cross-section beam (fixed-fixed) 

Mode 
n(Hz) 

% different 
Analytical FEM 

1 259.57 263.58 -1.54 
2 715.53 725.86 -1.44 

3 1402.73 1422.40 -1.40 

4 2318.79 2351.10 -1.39 

5 3643.83 3512.20 3.61 
 

Table 2 Natural frequency of the uniform cross-section beam (fixed-free) 

Mode 
n(Hz) 

% different 
Analytical FEM 

1 40.79 41.16 -0.91 
2 255.65 257.77 -0.83 

3 715.82 721.77 -0.83 

4 1402.70 1415.10 -0.88 
5 2318.79 2340.70 -0.94 

 

Table 3 Natural frequency of the non-uniform cross-section beam (fixed-fixed) 

Mode 
n(Hz) 

% different 
Analytical FEM 

1 258.51 266.26 -3.00 

2 714.00 731.61 -2.47 
3 1400.99 1433.40 -2.31 

4 2316.82 2370.70 -2.33 

5 3461.78 3543.30 -2.35 
 

Table 4 Natural frequency of the non-uniform cross-section beam (fixed-free) 

Mode 
n(Hz) 

% different 
Analytical FEM 

1 31.42 32.11 -2.20 

2 234.28 239.37 -2.17 

3 695.44 706.42 -1.58 
4 1382.18 1404.10 -1.59 

5 2298.04 2337.10 -1.70 

 

5. Conclusion 
 

This paper presents analytical method based on differential equation of motion for a non-uniform Timoshenko 

beam and the Euler-Bernoulli thin beam equation.  
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Two model of continuous beam are consider, the uniform and non-uniform cross-section beam. The boundary 

conditions used are fixed-fixed and fixed-free. The FEM is used to compare the results. The analytical method 

and the finite element method give the agreeable results, with slightly different value of the natural frequencies.  
 

Acknowledgement 
 

Authors would like to thank you all staffs and students of Dynamics and Vibrations Group (DVG) Mechanical 

Department Thammasat University for great support.  
 

References 
 

S. P. Timoshenko (1921), On the correction for shear of the differential equation for transverse vibrations of 

prismatic bars, Philosophical Magazine, Vol. 41, 744-746.  

S. P. Timoshenko (1922), On the transverse vibrations of bars of uniform cross section, Philosophical Magazine, 

Vol. 43, 125-131. 
R. Courant and D. Hilbert (1953), Methods of Mathematical Physics, Vol. 1, Interscience, New York. 

H. V. S. Ganga Rao and C. C. Spyrakos (1986), Closed form series solutions of boundary value problems with 

variable properties, Computers & Structures, Vol. 23, 211-215. 
M. Eisenberger and Y. Reich (1989), Static, vibration and stability analysis of non uniform beams, Computers & 

Structures, Vol. 31, 567-573. 

E. C. Pestel and F. A. Leckie (1963), Matrix Methods in Elastomechanics, New York: McGraw-Hill. 
N. M. Newmark (1943), Numerical procedure for computing defections, moment and bucking loads, Trans 

ASCE, Vol. 108, 1161-1188. 

S. Y. Lee and Y. H. Kuo (1993), Static analysis of nonuniform Timoshenko beams, Computers and Structures, 

Vol. 46, No.5, 813-820. 
M. Yu, Z. S. Liu, D. J. Wang (1996), Comparison of several approximate modal methods for computing mode 

shape derivatives, Computers & Structures, Vol. 62, 381-393.  

Wu, J.-S.; Lin, T.-L. (1990), Free vibration analysis of a uniform cantilever beam with point masses by an 
analytical-and-numerical-combined method, Journal of Sound and Vibration, Vol. 136, Issue 2, 201-213. 

B. O. Al-Bedoor, Y. A. Khulifef (1996), An approximate analytical solution of beam vibrations during axial 

motion, Journal of Sound and Vibration, Vol. 192, Issue 1, 159-171. 

B. G. Galerkin (1915), Sterzhni i plastinki: Riady v nekotorykh voprosakh uprugogo ravnovesiia sterzhnei i 
plastinok, Vestnik inzhenerov, I(19), 897-908. 

W. Weaver Jr., S. P. Timoshenko, D. H. Young (1990), Vibration problems in engineering, 5
th
 ed., Wiley 

Interscience, New York. 
A.Dimarogonas (1996), Vibration for Engineers 2

nd
 ed., New Jersey : Prentice Hall. 

S. S. Rao (2004), Mechanical Vibrations (4
th
 ed.), New Jersey: Pearson Prentice Hall. 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 


