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Abstract 
 

We focus on the derivation of consistent estimates of the standard deviations of estimates of the parameters of a 

multiple regression model fitted via a robust procedure, namely, the so-called M (M for maximum likelihood) 

regression fitting method. M-regression is mostly actualized by way of weighted least squares (WLS). It is 
common knowledge that most commonly used statistical packages offering WLS assume that the weights are fixed. 

In this scenario M-regression yields standard errors that are inconsistent and unstable, moreso if the underlying 

sample is small. The alternative approach on offer in this article is the bootstrap. Using the re-sampling 
mechanism inherent in bootstrapping, it is demonstrated empirically that bootstrap standard errors are smaller 

than their M-regression counterparts. 
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1. Introduction  
 

Bootstrapping was first introduced into regression by Efron (1979). Since then much research has gone into 

investigating the performance of the bootstrap method in regression. Freedman (1981) offers an early theoretical 
analysis of the asymptotic theory of the bootstrap for regression and correlation models. Specifically, the author 

has shown that the bootstrap approximation to the distribution of least squares parameters estimates is valid. 

Freedman’s work was extended by Wu (1986) whose intervention itself was extensively discussed by Efron and 

Tibshirani (1993) and Wilcox (2001). Freedman and Peters (1984) present the bootstrap in the context of an 
econometric regression model, describing the demand for energy by industry. The main finding is that for 

generalized least squares with estimated covariance matrix, the asymptotic formula for standard errors can be too 

optimistic, sometimes by quite large factors. Thus, the bootstrap procedure is appreciably better than the 
conventional asymptotic approach when applied to the finite – sample situation. Stine (1985) uses the bootstrap to 

set prediction intervals in regression. These intervals approximate the nominal coverage probability in small 

samples without requiring specific assumptions about the sampling distribution. The asymptotic properties of the 
intervals do not depend upon the sampling distribution and Monte Carlo results suggest that invariance 

approximately holds for relatively small samples. Furthermore, Stine states that the use of the bootstrap does 

however require certain assumptions; for example, assumptions such as that the specified model be the correct 

model. In the same vein Efron (1983, 1986) extended the problem of prediction rule to general exponential 
families with emphasis on logistic regression. After establishing a general theory for prediction rule, Efron uses 

the bootstrap to estimate error rate of a prediction rule and also determine how biased the apparent error rate is. 

Breiman (1996) demonstrates the use of the bootstrap for the more primary purpose of producing efficient 
estimates of regression parameters. Tibshirani and Knight (1999) have proposed a bootstrap – based method for 

enhancing a search through a space of models, including applications to regression models. Finally, Hamadu 

(2003) has extensively studied the use of bootstrapping under a variety of regression settings. 
 

This article reports yet another contribution to the kinds of research efforts described above; that is, research 

efforts directed towards the study of the performance of the bootstrap in regression. Specifically, we demonstrate 
empirically that the bootstrap is a veritable instrument to enhance the efficiency of robust (M) regression. 
 

We briefly review M regression in Section 2. Section 3 describes the critical steps of the bootstrap in regression. 
We show an empirical example in Section 4. The article is concluded with a summary and some comments in 

Section 5. 
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2. Review of M-Regression 
 

The usual multiple regression model, in matrix notation is  

    XY         (2.1) 

 where,  

 Y   is an 1n  vector of observations of the response variable Y 

 X is an pn  (design) matrix of known constants 

   is an 1p  vector of unknown regression coefficients and 

   is an 1n  vector of random errors. 

It is assumed that elements of   are independent and identically distributed and nIV 2)(    where nI  is an 

nn  identity matrix and  2 
(>0) is a constant. For the estimation  of    by ordinary least squares (OLS) it is 

further required that the data at hand be well – behaved, that is, that data are devoid of outliers. 

 
Robust or specifically M-regression is a good alternative to OLS in the event that there are outliers in the data. M-

regression is described as follows. 

Consider the function 
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where iY  is the ith element of Y  (2.2) 

iX  is the ith row of X and ̂  
is a robust estimate of  . The function is to be maximized with respect to the 

elements of  . Thus, differentiating (2.2) partially with respect to the elements of  , say j , and equating the 

derivatives equal to zero, we have 
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where (.) represent (.)' , that is, derivative of  , and ijx  is the (ij)th element of X. The maximizing values 



p ...,,, 21  associated with the p equations are called the M estimators of the elements, p ,...,, 21  of  , or 

we can just say that ̂   is M estimator of  . Hogg (1979) gives a detailed account of how ̂  can be improved 

upon using weighted least squares (WLS). This is summarized in the following steps:  

1. Begin with initial estimates
0

̂  and 0̂ . (Note that it is convenient to take OLS estimate of   to be initial 

estimate 
0

̂ and following this  00
ˆˆ  ii XYmedian         

2. Calculate residuals 0̂
t

iii XYr  ,   ni ,...,2,1  

3. Calculate weights iii rrw /)(   

Hence form nn diagonal matrix of weights W whose diagonal elements are wi    

4. Carry out weighted least squares (WLS) to yield new   

YWXWXX tt 1

)1( )(ˆ    

5. Iterate between Step 2 through Step 4 until convergence. 

A few pertinent remarks are in order: 

(i) an approach that is slightly different from the above is to estimate   and   simultaneously . Dutter 

(1977)   has described how this can be done. 
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(ii) The choice of an appropriate weighting function   is critical in  M-regression. Hogg (1979) has given some 

tips to guide selection of an appropriate   function from among those that are commonly used in practice, 

Huber’s, and Tukey’s biweight  function s are used in the present article. 
 

3. The Bootstrap in Robust Regression 
 

Robust estimators such as ̂  of   in model (2.1) are not maximum likelihood estimators in the classical sense. 

This is because the form of the distribution of   is not known. Specifically, the distribution function )(F  is not 

specified. By the same token )ˆ(F ) is unknown. Which goes to show that M estimators are essentially non 

parametric. We venture to say that this non-parametric environment provides a proper setting for the bootstrap 

methodology to be applied. 
 

Let 


  XYt

n )ˆ,...,ˆ,ˆ(ˆ
21  denote the residuals from the fitted (robust) regression. The bootstrap sample 

*,...,*.,* 21 n



  is generated by sampling n



 ,,....., 21  with replacement. Thus, the bootstrap sample leaves 

out some elements from )...,,2,1( nii 


  but could include other elements two, three, four or more times. Now 

defining the bootstrap observations as 
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we can obtain *̂  as the solution to 
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Notice the similarity of (2.3) and (2.4); the similarity simply shows that applying the robust estimator to the 

original sample (Y , X) yields ̂ , and applying the same estimator to (


Y , X) yields *̂ , namely, the bootstrap 

estimate. As indicted earlier )ˆ(F  represents the true but unknown distribution function of ̂ , and *)ˆ(ˆ F  

denotes the observed distribution function of  *̂ , which is known by virtue of the fact that it is obtained via 

many Monte Carlo repetitions of the bootstrap sampling process described earlier . That is, if we draw bootstrap 

samples a large number of times, B times say, then the B values of *̂  will yield *)ˆ(ˆ F  which approximates a 

maximum likelihood estimate of )ˆ(F . The bootstrap variance estimates the true but unknown variance of ̂ . 

In practical terms, there are two ways to carry out bootstrapping in regression analysis where one has data ( Y , X) 

following the model in (2.1). 

One way is to resample the residuals from the fitted model and the other is to resample the data ( Y , X). 
 

3.1 Bootstrapping Regression Via Residual Resampling 
 

Residual bootstrapping proceeds using the following steps: 

i. Perform regression with the original sample ( Y , X) to calculate predicted values Ŷ and residuals r  

ii. Randomly resample the residuals with replacement, but leave X and Ŷ  values unchanged. Let the 

bootstrap residuals be denoted by r*. 

iii. Construct new Y * values by adding r * to the original predicted values to yield   *ˆ* rYY   . 

iv. Regress *Y  on the original X variable(s). 

v. Repeat steps (ii) to (iv) B times. 

We then study the distribution of the bootstrap estimate  *̂  across the B bootstrap samples.            
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3.2 Data Bootstrapping  
 

Data resampling, otherwise called model – free bootstrap, bootstraps regression without assuming fixed X or 

identically distributed errors. It proceeds as follows: 
  

i. Randomly choose samples of size n, sampling complete cases ( Y , X) from the original data with 

replacement     

ii. Within each bootstrap sample regress Y * on the X* variable(s) as usual    
 

Unlike residual resampling, data resampling, as noted above, does not assume independent and identically 

distributed errors. Since it allows for other possibilities, and also admits random X values as a new source of 

sample-to-sample variation, data resampling often yields results quite different from those expected under the 
usual regression assumptions. Stine (1990) recommends basing the choice of residual versus data sampling on 

how the data were collected. Residual resampling would be preferred if the fixed X assumption is realistic. 

Otherwise, if X varies as randomly as Y  then data resamping should be the choice. In either case we want the 

process of bootstrap resampling to mimic the way in which the sample was originally selected from the 
population. 
 

4. Application  
 

4.1 Description of Data 
 

When oil prices rose during the 1970s, wood stoves came back into fashion for heating in parts of the country. 

Although it is often cheaper than other sources, wood burning pollutes both outdoor and indoor air. The following 

table gives measures of the peak carbon monoxide (CO) levels during 11 tests of wood-burning stoves. Robust 
methods are particularly appropriate here due to two unusual tests (9&10): the stove F overheated, possibly due to 

overfilling with wood, and experimenters reduced airflow by using a damper that caused the house to fill with 

smoke. Such incidents are common with no airtight stoves, especially with inexperienced operators (see Hamilton 
1992). 
 

Table 6.1 Data on Indoor carbon monoxide pollution from wood-burning stoves 
 

Test    Stove         Burning     Amount of Wood    Peak House 
        Type          Time (hours)       Burned (kg)          CO (ppm) 

   1 Airtight              14.8            37.3        2.8 

 2 Airtight               8.8    38.4 1.2 
 3 Airtight             13.0   21.2 1.6 

 4 Airtight              13.7 27.2 2.0 

 5 Airtight             18.5 40.6 1.2 

6       Airtight             18.0 43.2 1.4 
 7        Airtight            16.1           24.2                        3.8 

    8    Non airtight       8.7 24.4 7.7 

 9 Non airtight      10.4 32.4 35.0 
10     Non airtight       5.4 23.2 43.0 

11     Non airtight       9.5 38.6 3.5 

X = Burning Time, X2 = Amount of Wood Burned and as mention above Y = CO 
 

4.2 Regression Model for the Data 
 

The following regression model is proposed for the data: 

  11,...,2,1,22110  iXXY iiii     (4.1) 

where, 

0 , 1 , 2 are regression parameters, and  is random error in Y assumed to have constant variance, that 

2)(  V . Furthermore, for inference purposes, it is necessary to assume that ),0(~  N . 
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For fitting the model in (4.1) to the data, we used three robust regression techniques, namely, robust biweight 
regression on one hand and two bootstrap-based robust procedures on the other. 

The results of the regression fits are presented in Table 4.1.    
 

Table 4.1 Regression Estimates and their Corresponding Standard Errors in Brackets. 
 

 Estimates 

Methods of Estimation 
0̂  1̂  

2̂  

WLS based on Huber’s weight with c=1.345 20.497 

(10.779) 

-0.977 

(0.681) 

-0.066 

(0.311) 

WLS based on Biweight weight with c = 4.875 10.153 

(1.913) 

-0.347 

(0.121) 

-0.065 

(0.052) 

Robust M-regression via Model Bootstrap with B=500 53.462 

(0.08) 

-0.650 

(0.081) 

-0.280 

(0.006) 

Robust M-regression via Data Bootstrap with B=500 35.262 

(1.150) 

-0.456 

(0.153) 

-0.101 

(0.04) 
 

Relevant entries in the table show that estimates of regression from the bootstrap robust regression fitting methods 

have uniformly smaller standard errors than those from the biweight regression.  This result is an indication that 
bootstrapping can serve as an instrument for boosting the efficiency of robust regression, which in essence is the 

main aim of this research. However, we are surprised at the large differences in magnitudes of the estimated 

coefficients although each estimate maintains the same sign across the three methods under consideration. As for 

the two bootstrap robust regression models, it is hardly surprising that their results differ. It is not a surprise  
because, as noted earlier in section 3.2 above, data resampling, does not necessarily assume that the design X is 

fixed; instead, it can admit random X which occasions greater variability in the estimation data. Consequently, 

data resampling often yields results that are quite different from those of residual resampling; the latter depending 
on the usual least squares assumptions for its validity.        
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