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Abstract 
 

Microwave links, which are used for communication, are mostly over land. The behaviour of the links over a  
water body depends on various factors such as atmospheric conditions, water body behaviour and the 

environment in which the link is operated. The Yeji-Salaga Line-of-Sight (LOS) microwave telecommunication 

link is along the Volta Lake. This study therefore aimed at investigating the microwave transmission on the Yeji-
Salaga link using time series analysis. Sequence of observations of Receive Signal Level (RSL) data were 

collected over five years between January, 2006 and December, 2010.  Seasonal Autoregressive Integrated 

Moving Average (SARIMA) models were developed on the RSL data. SARIMA (1, 1, 1) x (0, 1, 2)12 was selected to 
be the best model. Out of term forecasting with the SARIMA (1, 1, 1) x (0, 1, 2)12 model produced a stable forecast 

pattern of 24 months contrary to expectations. Forecast values agree well with the observed data for the out of 

term period from January, 2011 to July, 2011 for which forecast data was available. Our findings lead us to 

propose the introduction of frequency diversity technology as add-on to the existing space diversity technology for 
improving the received transmission signal 
 

Keywords: Microwave transmission, Time series analysis, SARIMA, line-of-sight 
 

1. Introduction 
 

Microwave radio transmission is commonly used in point-to-point communication systems on the surface of the 

Earth, in satellite communications, and in deep space radio communications. Other parts of the microwave radio 
band are used for radars, radio navigation systems, sensor systems, and radio astronomy. 
 

Microwave transmission involves the sending and receiving of microwave signals over a microwave link. This 

microwave link is made up of a string of microwave radio antennas located at the top of towers at various 

microwave sites (Salema, 2003). Terrestrial line-of-sight microwave links have been playing a very important role 

in long distance wireless communications since the 1950s (Huang, 1997). Microwave links are a key part of the 
world’s telecommunications infrastructure. The tremendous growth in wireless services is made possible today 

through the use of microwaves for backhaul in wireless and mobile networks and for point-to-multipoint 

networks. 
 

Chen and Trajkovi´c (2004) analyzed data collected from a deployed network and used clustering techniques to 

characterize patterns of individual users’ behaviour. A network traffic prediction approach was then developed 
based on user clusters. Based on the identified user clusters, they used the Seasonal Autoregressive Integrated 

Moving Average (SARIMA) model to forecast the network traffic by aggregating the predicted traffic of each 

user cluster. The predicted network traffic shows good agreement with the collected traffic data. 
 

Yantei et al. (2005) fitted multiplicative seasonal ARIMA models to measured GSM traffic traces of China 

Mobile of Tianjin network. Their experiments showed that the forecasting values and the actual values had a 

relative error of less than 0.02 and that SARIMA model is capable of capturing the properties of real traffic. 
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Javedani et al. (2010) studied the empirical data for quarterly electricity demand and compared the accuracy of 
five univariate methods forecasting, namely naïve, regression, decomposition additive and multiplicative, 

exponential smoothing, and Box-Jenkins methods. Data generated from 66 quarters electricity usage in 

Washington power supply are used as case study. They divided the data into two parts, namely in-sample and out-
sample for parameter estimations and forecasting evaluation respectively. The results show that when the data 

contain some outliers, ARIMA model may give the unacceptable results. In contrast exponential smoothing 

methods are suitable in this condition because it gives more weight to the most recent observation. In addition, 

they concluded from the performance evaluation that an exponential smoothing method yields more accurate 
forecast than other methods. 
 

Kahforoushan et al. (2010) examined the performance of artificial neural network, Box-Jenkins and Holt-Winters 

models in forecasting added value of agricultural sub sectors in Iran and concluded that Box-Jenkins model gave 

better results in forecasting of unseen data. 
 

Loganathan et al (2010) generated one-period-ahead forecasts of international tourism demand for Malaysia using 

Box-Jenkins model and confirmed that this model provides a reliable forecast. 
 

Aidoo (2010) proposed SARIMA (1,1,1) x (0,0,1)12 to forecast inflation rate in Ghana by using monthly inflation 

data from July 1991 December 2009. He forecasted 7 months inflation rates of Ghana which agreed well with the 
observed inflation rate from January to April published by Ghana Statistical Service Department. 
 

Wongkoon et al (2008) studied the incidence of Dengue Haemorrhagic Fever (DHF) in Northern Thailand. 
SARIMA models were applied to analyze 2003 to 2006 data. The forecasted data were validated with data 

collected from January, 2007 to September, 2007. Their results showed that SARIMA model is suitable for 

predicting the number of DHF incidence in Northern Thailand. 
 

Assis et al (2010) compared forecasting performances of different time series methods for forecasting cocoa bean 

prices. They concluded that the mixed ARIMA/GARCH model outperformed the exponential smoothing, ARIMA 
and GARCH models. 
 

Xiang (2008) used SARIMA model to study climate change by considering temperature measurement of 
Stockholm from 1756 to 2007. The result indicated that even the strongest outlier has weak effect and there exist 

a stable structure in the temperature data. 
 

In this paper microwave transmission received signals data of a Telecommunications Company in Ghana, 
transmitting over the Yeji-Salaga line-of-sight, is studied as a time series data. The Yeji-Salaga line-of-sight 

transmission link is over a river and it experiences acute fading during parts of the year, resulting in variations in 

the received signals.   
 

2. Related Works 
 

Statistical analysis of time series data started a long time ago (Yule, 1927), and forecasting has an even longer 

history (Tsay, 2000). One of the earliest recorded series is the monthly sunspot numbers studied by Schuster 

(1906). 
 

Time series analyses may be divided into two classes: frequency-domain methods and time-domain methods. The 

former include spectral analysis and recently wavelet analysis; the latter include auto-correlation and cross-
correlation analysis. 
 

The two fundamental building blocks of a linear univariate time series model are the autoregressive (AR) model 

and moving average (MA) model (Shekhar, 2004). In an AR model, the forecast is a function of its past 

observations, while in a MA model the forecast is a function of its past errors. Quality of predictions is diminished 

as the time for which predictions are made is farther in the future.  
 

Box and Jenkins have played a pioneering role in developing methodologies for univariate time series modelling. 

By adding the possibility for differencing at a single lag and seasonal lag as well as allowing for seasonal 
components in the ARMA model the SARIMA model can be defined. 
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The seasonal time series ARIMA (SARIMA) model was initially presented by Box-Jenkins (Box and Jenkins, 
1976) and was successfully used in forecasting economic, marketing, social problems, etc. (Tseng and Tzeng, 

2002). While this model has the advantage of accurate forecasting over short periods, it also has the limitation that 

at least 50 and preferably 100 observations or more should be used (Box and Jenkins, 1976). In addition, this 
model uses the concept of measurement error to deal with the deviations between estimators and observations, but 

the data it uses are precise values that do not include measurement errors (Tanaka, 1987).  
 

Akter and Rahman (2010) studied milk supply of a dairy cooperative in the UK using Holt-Winter’s seasonal 

model and seasonal autoregressive integrated moving average model (SARIMA). Their results showed that longer 

series produces better forecasts than a shorter series and the generated forecasts had error of less than 3 per cent. 
 

Shekhar (2004) researched into recursive methods as applied to SARIMA (1,0,1) (0,1,1) model parameter 

estimation. His results established the stability and consistency of the SARIMA model and concluded that the 
parameters did not show a highly variable pattern with time. Also the model was insensitive to minor fluctuations 

in the parameters. 
 

Nobre et al. (2001) studied data collected through a national public health surveillance system in the United States 

to evaluate and compare the performances of a seasonal autoregressive integrated moving average (SARIMA) and 

a dynamic linear model (DLM) for estimating case occurrence of two noticeable diseases (malaria and hepatitis 
A). Their comparison found out that the two forecasting modelling techniques (SARIMA and DLM) are 

comparable when long historical data are available (at least 52 reporting periods). . The residuals for both 

predictor models showed that they were adequate tools for use in epidemiological surveillance.  
 

Vector autoregression (VAR) is a statistical model used to capture the linear interdependencies among multiple 

time series. VAR models generalize the univariate autoregression (AR) models. All the variables in a VAR are 
treated symmetrically; each variable has an equation explaining its evolution based on its own lags and the lags of 

all the other variables in the model. VAR models had previously appeared in time series statistics and system 

identification, a statistical specialty in control theory (Sims, 1977). Chandra and Al-Deek (2009) proposed a 
vector autoregressive time series model to predict traffic speed and volume of a 2.5 mile segment of I-4 Orlando, 

Florida.  
 

The use of regression analysis is widespread in examining financial time series. Some examples are the use of 

foreign exchange rates as optimal predictors of future spot rates; conditional variance and the risk premium in 

foreign exchange markets; and stock returns and volatility. A model that has been useful for this type of 

application is the GARCH-M model, which incorporates computation of the mean into the GARCH (generalized 
autoregressive conditional heteroskedastic) model. One application of this model is the analysis of stock returns 

and volatility. 
 

The GARCH-in-mean (GARCH-M) model adds a heteroskedasticity term into the mean equation. Engle et al. 

(1987) made the assumption that changes in the conditional standard deviation appear less than proportionally in 
the mean. Glosten et al. (1993) developed their asymmetric GARCH model as a generalization of the GARCH-M 

model. 
 

The autoregressive fractionally integrated moving average (ARFIMA) model generalizes the former three. 

Tsekeris et al. (2006) proposed an Autoregressive Fractional Integrated Moving Average (ARFIMA) process and 

a Fractional Integrated Asymmetric Power Autoregressive Conditional Heteroscedastic (FIARARCH) process to 
improve the modelling of traffic variable conditional mean and variance. The improved models relax the linear 

dependence of conditional mean /variance, and take the asymmetric effects into consideration. The performance 

of the two approaches was investigated using actual 90-second traffic flow data collected from four loop detectors 

located in major signalized Arterial Street of a real urban network in Athens, Greece. The results showed that 
higher accuracy of the predicted volatility can be achieved by ARFIMA- FIARARCH model in comparison to the 

ARIMA-GARCH model, when longer prediction horizons were adopted 
 

Saz (2011) analyzed the efficacy of SARIMA models in forecasting the inflation rates in the Turkish economy. 

He performed rigorous tests on the stationarity and showed that seasonality in the Turkish inflation rate is both 

deterministic and stochastic in nature, with the latter form dominating the inflation process.  

http://en.wikipedia.org/wiki/Vector
http://en.wikipedia.org/wiki/Autoregression
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Linear_dependence
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/AR_model
http://en.wikipedia.org/wiki/Lag
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/System_identification
http://en.wikipedia.org/wiki/System_identification
http://en.wikipedia.org/wiki/System_identification
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Autoregressive_fractionally_integrated_moving_average
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He also provided the first study that tested for fractional integration in a Turkish inflation series from 2003 to 
2009. The results indicated a single best SARIMA model that provides a parsimonious and accurate 

representation of the Turkish inflation process from 2003 to 2009. 
 

Andreeski and Vasant (2008) studied the structural break problem in time series which makes it impossible to 

create only one model. They further explored why two structural breaks need enough data between them to create 
valid time series models for identification of the time series.  They used both Box-Jenkins ARIMA methodology 

and artificial neural networks to analyze the possibility of identification of the inflation process dynamics via 

system-theoretic. Their conclusion was that structural break problem can be overcome by using neural networks 

for system identification of unknown order with finite number of breaks. 
 

Li (2009) analyzed the measured temperature of Stockholm from 1756 to 2007 by using general linear model 
(GLM) and ARIMA models. He forecasted the monthly temperature of 2008 and compared with the true values. 

His conclusion was that the Seasonal ARIMA (SARIMA) model for the series fits the data better than the general 

linear model. 
 

Yan et al. (2010) developed and evaluated an innovative hybrid model, which combines the SARIMA and the 

generalized regression neural network (GRNN) models, for bacillary dysentery forecasting in Yichang City of 
China. The model was applied to monthly data of bacillary dysentery from 2000-2007. Their test results showed 

that hybrid SARIMA-GRNN model outperformed the SARIMA model with lower mean square error, mean 

absolute error and mean absolute percentage error when simulation and forecasting performance are compared. 
 

Permanasari et al. (2009) analysed data set on human Salmonellosis occurrences in United States which 

comprises of fourteen years of monthly data obtained from a study published by Centres for Disease Control and 
Prevention (CDC).  Several models of Seasonal Autoregressive Integrated Moving Average (SARIMA) were 

developed to forecast the occurrence of the disease. The models were validated using the diagnostic test to obtain 

the appropriate model. Their result showed that the SARIMA (9,0,14) (12,1,24)12 is the fittest model. 
 

Tanaka and Ishibuchi (1992) and Tanaka et al. (1982) proposed the use of fuzzy regression to solve the fuzzy 

environment problem and avoid modelling error (Tanaka et al., 1987). Song and Chissom (1993) presented a 
definition of fuzzy time series and outlined its modelling by means of fuzzy relational equations and approximate 

reasoning. Chen (1996) presented a fuzzy time series method based on the concept of Song and Chissom.    
 

An application that uses fuzzy regression to fuzzy time series analysis was suggested by Watada (1992) but this 

model did not include the concept of the Box–Jenkins’s model. Tseng et al. (2000) proposed the fuzzy ARIMA 

(FARIMA) method which uses the fuzzy regression method to fuzzify the parameters of the ARIMA model, 
although this model did not deal with the problem of seasonality. Tseng and Tzeng (2002) suggested another 

model which was an extension of previous work done by Tseng et al. (2000). They combined the advantages of 

the SARIMA (p,d,q)(P,D,Q)s model and the fuzzy regression model to develop the fuzzy SARIMA (FSARIMA) 
method. 
 

The Authors used SARIMA time series to model the microwave transmission received signal of the Yeji-Salaga 
line-of-sight link. Even though ARIMA/SARIMA models are known to be effective for short term forecasting our 

SARIMA showed a stable shape over twenty-four months. This is in spite of the findings of Abraham et al., 

(2009) that forecasting with ARIMA and SARIMA models are effective over a shorter period of time. 
 

3. Problem Statement 
 

Normally, transmission losses on land are relatively minimal. However, transmission losses across water bodies 
are high and transmission is unpredictable. Yeji-Salaga microwave link is on the Volta Lake of Ghana and has 

wide expanse of water in it. 
 

For the months of April to October transmission signal strength is normal. However, during the Harmattan season 

of the year from November to March transmission signal strength is lower and fluctuates. This happens in spite of 

the presence of the space diversity technology deployed to reduce fading in the microwave transmission. There is 
therefore the need to investigate and confirm the transmission pattern in order to use the result as basis for policy 

and planning.     
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A weekly measurement on Yeji-Salaga Line-of-Sight (LOS) microwave link systems for the period January, 2006 

to December, 2010 was done using Yeji (receiving end) and Salaga (transmitting end) for the research. The 

transmit power level was constant at 32 dBm and of frequency 6GHz at Salaga. The measurement was done with 

data acquisition software SDH2000 Series LCT at the receiving end.  
  
The original data set at the receiving end which were recorded weekly were aggregated to obtain the average 
monthly data. Table 1 shows the aggregated data of the Yeji-Salaga received Signal Level (RSL). 
 

Table 1: Yeji-Salaga LOS Microwave Link RSL Data in dBm 
 

MONTH YEAR 2006 YEAR 2007 YEAR 2008 YEAR 2009 YEAR 2010 

January -71.0625 -70.5 -74.375 -74.0625 -63.9375 

February -67.875 -71.25 -69.375 -73.8125 -62.875 

March -26.5625 -28.25 -28.8125 -29.0625 -28.75 

April -27.3125 -27.1875 -29.6875 -27.375 -27 

May -27.75 -27.9375 -27.375 -27.6875 -27.75 

June -28.0625 -27.4375 -30.25 -28.0625 -27.8125 

July -27.6875 -27.6875 -26.8125 -27.625 -27.1875 

August -28.25 -30.75 -27.1875 -31.1875 -27.1875 

September -26.375 -26.375 -26.375 -26.375 -26.3125 

October -26.625 -26.625 -26.375 -26.625 -32.8125 

November -26.375 -26.375 -26.75 -26.375 -30.25 

December -71.375 -73.5625 -73.625 -63.1875 -71.875 

 

Figure 1 below shows the time plot of the RSL data collected from 2006 to 2010 

 
Figure 1: Time Series plot of Received Signal Level data from 2006 to 2010 

The observed regularly repeating pattern of highs and lows of Figure 1 relates to seasonal data of months of the 
year and it is an indication of seasonality. 
 

4. ARIMA and SARIMA models 
 

Autoregressive Integrated Moving Average (ARIMA) Models 

A process, {xt} is said to be ARIMA (p, d, q) if 

                         ∇𝐷𝑥𝑡 = (1 − 𝐵𝑠)𝐷𝑥𝑡                                              ................................ (1)  

is ARMA (p, q).  In general, the model is given by 

 

   𝜙 𝐵 (1 − 𝐵)𝑑𝑥𝑡 = 𝜃(𝐵)𝜔𝑡 , {𝜔𝑡} ~WN (0, 𝜎2)                        ............................... (2)  
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The backshift operator is defined by 𝐵𝑘𝑥𝑡 = 𝑥𝑡−𝑘  . 

 

𝜙(B) = 1 - 𝜙1B – 𝜙2B
2
-

 
 ... - 𝜙pB

p
 is the autoregressive operator and 

θ(B) = 1 + θ1B + 𝜃2B
2
 + ... + θqB

q
 is the moving average operator. 

𝜙(B)≠0 for 𝐵 ≤ 1, the process {𝑥𝑡} is stationary if and only if d=0, in which case it reduces to an ARMA (p, q) 

process. 
 

The parameter p is the number of autoregressive lags (not counting the unit roots), d is the order of integration and 

q gives the number of moving average lags. 
 

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model  
 

The multiplicative seasonal autoregressive integrated moving average model, or SARIMA model, of Box and 

Jenkins (1976) is given by 

 

Φ 𝐵𝑠 𝜙 𝐵 ∇𝑠
𝐷∇𝑑𝑥𝑡 = Θ 𝐵𝑠 𝜃(𝐵)𝑤𝑡                                          ................................ (3)   

 

The general model is denoted as ARIMA (p, d, q) × (P, D, Q)S. The non-seasonal autoregressive and moving 

average component are represented by polynomials 𝜙(B) and θ(B) of orders p and q, respectively and the seasonal 
autoregressive and moving average components by Φ(B

S
) and Θ(B

S
) of orders P and Q and non-seasonal and 

seasonal difference components by ∇𝑑  = (1 − 𝐵)d
 and ∇𝑠

𝐷= (1 − 𝐵𝑠)D
 

 

where,  
p, d and q are the order of non-seasonal AR, differencing and MA respectively.  

P, D and Q is the order of seasonal AR, differencing and MA respectively.  

𝑥𝑡  represents time series data at period t.  

𝑤𝑡  represents Gaussian white noise process (random shock) at period t.   

B represent backward shift operator (B𝑘𝑥𝑡 = 𝑥𝑡−𝑘  ) 

∇𝑠
𝐷  represents seasonal difference. 

∇𝑑   represents non-seasonal difference. 

s   represent seasonal order (s= 12 for monthly data). 
 

5. Model Tests 
 

The R software was installed on Dell Latitude E6400 with the following specifications: 

Processor: Intel(R) Core (TM) 2 Duo CPU P8400 @ 2.26GHz 

Memory (RAM): 2.26 GHz, 1.95GB of RAM.  
An R-code was written by the authors to analyze the data. Using the R software a time series analysis was 

conducted on the data and several plots and results were then generated and forecasts made from these plots. 
 

6. Analysis and Results 
 

Unit Root Test of Stationarity 
 

The Kwiatkowski-Philip-Schmidt-Shin (KPSS) was done in order to test the stationarity of data. The test result is 

shown in Table 2 below 
 

Table 2: KPSS Test 
 

KPSS level 0.0647 

Truncation lag parameter 7 

p-value 0.1 
 

From Table 2, the p-value of 0.1 is greater than 0.05. Hence the series is stationary. 

The autocorrelation function of Yeji-Salaga RSL data is shown in Figure 2. The ACF is decreasing gradually at 
spikes of multiples of 12, 24, 36 which shows that there is seasonality and no trend and therefore seasonal 

differencing is necessary. 
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Figure 2: Autocorrelation function of Yeji-Salaga RSL data 

Seasonal Differencing 
 

The output of the differenced data is shown in Figure 3 below. We used a seasonal difference equation (1-B
12

)xt = 
xt - xt-12  and  (1-B)xt = xt - xt-1 for non-seasonal differencing. The plot shows a transformation of the RSL data 

using the first differencing method to remove the seasonality component in the original RSL data. The pattern 

move irregularly about its mean value of zero with the variability being  approximately stable. 

 
 

Figure 3: Plot of 12
th

 differencing of the data 
 

The plot shows clear monthly effect and no obvious trend, so the ACF and PACF of the 12
th
 difference (seasonal 

differencing) are examined in Figure 4 below. The top part of Figure 4 shows the ACF and the bottom part shows 

the PACF of the differenced RSL data at various lags. 
 

 

 

 
 

0 1 2 3 4

-0.
4

-0.
2

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Receive Signal Level

Series:datadiff

Time(year)

Re
ce

ive
 S

ign
al 

Le
ve

l(d
Bm

)

2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

-5
0

5
10



© Centre for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

47 

 
Figure 4: ACF and PACF plots 

 

At the non-seasonal levels, the ACF has significant spike at lag 1 and tails off after lag 1. The PACF has a spike at 

lag 1 and cuts off after lag 1. At the seasonal level, the ACF has spike at lag 12 and cuts off after lag 12. The 

PACF tails off after lag 12. 
Examining the ACF and the PACF of the differenced data, the order of the model 

 (p, d, q) x (P, D, Q)s was determined as follows: 

p=1, d=1, q=1, P=0, D=1 and Q=2                                                . ……………….. (4) 

Φ 𝐵𝑠 𝜙 𝐵 ∇𝑠
𝐷∇𝑑𝑥𝑡 = Θ 𝐵𝑠 𝜃(𝐵)𝑤𝑡                                             .......................... (5)  

Substituting into SARIMA (p, d, q) x (P, D, Q)S and equation (1.13), give 

        SARIMA (1, 1, 1) x (0, 1, 2)12                                                                         ………………. (6) 

and 

(1- 𝜙1B)xt = (1- 𝜃1B)(1-Θ1B
12 

– Θ2B
24

) wt                             ………………….(7) 
Using the same procedure, the following models are suggested: 

 SARIMA(1,1,1)x(0,1,2)12 
 SARIMA(1,1,1)x(1,1,1)12 
 SARIMA(1,1,1)x(1,1,0)12 
 SARIMA(1,1,1)x(1,1,2)12 

Using the Maximum Likelihood Estimator the model parameters 𝜙, 𝜃, Θ, Φ are  estimated. The z-values of the 

parameters corresponding the SARIMA models are shown in  Table 3. The significant z-values are real and also 
have their modulus being greater than 1.96.  A dash in a box indicates the parameter is not applicable to the 

respective model.   

 

Table 3: z-values of parameter estimates for SARIMA (1, 1, 1)x(0, 1, 2)12, 
 

 SARIMA (1,1,1)x(1,1,2)12 , SARIMA (1,1,1)x(1,1,1)12 and SARIMA (1,1,1)x(1,1,0)12  

SARIMA MODEL 𝜙1  
AR(1) 

𝜃1  MA(1) Φ1  
SAR(1) 

Θ1  
SMA(1) 

Θ2  
SMA(2) 

𝜎 2 

(1, 1, 1)x(0, 1, 2)12 4.5333 -7.722 ---- 3.0103 2.7779 5.4 

(1,1,1)x(1,1,2)12 4.6870 -8.2169 NaN NaN NaN 4.968 

(1, 1, 1)x(1, 1, 1)12 4.6228 -7.8802 ----- -2.2326 -1.9802 5.484 

(1, 1, 1)x(1, 1, 0)12 5.0243 -10.111 ----- -5.0763 ------- 5.901 
 

From the results of  Table 3  SARIMA(1,1,1)x(1,1,2)12   was eliminated leaving out the three models  of: 

 SARIMA(1,1,1)x(0,1,2)12 
 SARIMA(1,1,1)x(1,1,1)12 
 SARIMA(1,1,1)x(1,1,0)12 
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Using the standardised residual test, the ACF of the residuals, Normal Q-Q plot of standardised  residuals and  the 
Ljung-Box statistic all the three models were found to be significant. 

 

Model Selection 
 

Thus the final model was selected using a penalty function statistics such as Akaike Information Criteria (AIC, 

AICc) and Bayesian Information Criterion (BIC). Table 4 shows the corresponding values for the three SARIMA 

models.  
 

Table 4: AIC, AICc and BIC for the SARIMA Models 
 

MODEL AIC BIC AICc 

SARIMA(1,1,1)x(0,1,2)12 2.822079 1.962929 2.875165 

SARIMA(1,1,1)x(1,1,1)12 2.837358 1.978208 2.890444 

SARIMA(1,1,1)x(1,1,0)12 2.876785 1.982422 2.923238 
 

From Table 4 above, SARIMA (1,1,1)x(0,1,2)12 is the best model with the minimum values of Akaike’s 

Information Criteria of AIC, AICc and  Bayesian Information Criterion (BIC) statistics. The AIC, AICc and the 

BIC are good for all the models but the   SARIMA(1,1,1)x(0,1,2)12 model provided the minimum values and was 

therefore selected. The data accompanying Table 3 gave the parameter estimates of the selected model to be 𝜙1 

(AR(1)) = 0.5848,  𝜃1 (MA(1)) = -1.0000, Θ1 (SMA(1)) = -0.7875,  

Θ2 (SMA(2)) = 0.7528                              
 

7. Forecasting with the SARIMA (1,1,1)x(0,1,2)12  model 
 

Using SARIMA (1,1,1)x(0,1,2)12, a forecast pattern for the next 24 months ahead of the original data for the 

period from December, 2010 to January, 2013 was generated . The graph of Figure 5 shows the series of the 

actual data, followed by the forecasts as a red line and bounded by the upper and lower prediction limits as blue 
dashed lines. 

 
Figure 5: Graph of the RSL, its forecasts and confidence intervals for    
SARIMA (1,1,1)x(0,1,2)12 model 
 

Table 5 below shows the forecast values and observed data for the seven month period from January to July, 
2011. The results indicate that the predicted values of SARIMA(1,1,1)x(0,1,2)12 model  is close to the true value. 

The maximum relative error is less than 4.4 percent. The model is therefore adequate to be used to forecast 

monthly RSL data. 
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Table 5: Forecasted value, Actual value,  Actual error and Relative error for January, 2011 to July, 2011 of 

the Yeji-Salaga RSL data. 
 

Month Forecasted 

Value(dBm) 

Actual 

Value(dBm) 

Actual 

Error 

Relative 

Error 

January -69.95712 -67.0625 2.89462 0.043163 

February -28.86105 -30.125 1.26395 0.041957 

March -27.95466 -28.375 0.42034 0.015037 

April -27.77458 -27.75 0.02458 8.86x10
-04 

May -28.50179 -27.125 0.75179 2.77x10
-02 

June -27.41275 -27.75 0.33725 1.2210
-02

 

July -29.13736 -29.065 0.07236 2.49x10
-02

 

 

8. Discussions 
 

Seasonal Autoregressive Integrated Moving Average (SARIMA) has been used to analyze monthly Receive 

Signal Level (RSL) of Yeji-Salaga microwave transmission link from January 2006 to December 2010.  
 

The authors have written an R-code to analyse the microwave transmission pattern (see appendix). The results of 

this study indicate that SARIMA model allows for more complex description of the seasonality and 

autocorrelation structure of the time series and is found to be suitable in predicting the microwave transmission 
pattern on the Yeji-Salaga microwave line-of-sight digital link.  
 

Based on the minimum AIC, AICc and BIC statistics the best fitted SARIMA model is the  
SARIMA(1,1,1)x(0,1,2)12 expressed as 
 

(1-5848B) (1- B) (1- B
12

)xt = (1+B)(1+0.7875B
12 

– 0.7528B
24

) wt .  The forecasting structure as shown in Figure 5 

is remarkable. (Abraham et al., 2009; Aidoo, 2010)  expect SARIMA models to have shorter period of predicting 

power. However, our prediction has a stable pattern that spans twenty-four months for five years of monthly data.  

The forecasting was tested on the available seven month out of term data and the maximum error was obtained to 
be less than 4.4%. 
 

According to (Barnett, 1970; Ali et al., 1987) frequency diversity improves signal reception. Since the results of 
this paper have confirmed the seasonal variations in the microwave transmission pattern of Yeji-Salaga 

telecommunication link to persist it will be necessary to have a technological update of  introducing frequency 

diversity in the Yeji-Salaga microwave transmission system.  
 

9. Conclusion 
 

The authors have written an R-code for using the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) to analyze monthly Receive Signal Level (RSL) of Yeji-Salaga microwave transmission from January 

2006 to December 2010.  
 

The best fitted SARIMA model  was the  SARIMA(1,1,1)x(0,1,2)12 also written  as 
 

 (1-5848B) (1- B) (1- B
12

)xt = (1+B)(1+0.7875B
12 

– 0.1528B
24

) wt .  The model was well suited and gave a stable 

prediction pattern that spans twenty-four months for a five year of monthly data. This is against the backdrop that 

SARIMA models have shorter period of predicting power (Abraham et al., 2009; Aidoo, 2010).Comparing the 
forecast values with available seven month out of term data, from January, 2011 to July, 2011, the maximum error 

was obtained to be less than 4.4%. 
 

 In line with findings of Barnett, (1970); Ali et al., (1987) the authors propose the introduction of frequency 

diversity technology in the Yeji-Salaga microwave transmission system as add-on update to the current space 

diversity technology to improve the  signal reception.  
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Appendix 
 

     R-CODE FOR  SARIMA TIME SERIES MODEL 

     data = read.table (“C:\\Documents and Settings\\Administrator\\Desktop\\data.txt”, header = TRUE)  

     data= ts (data, start= (2006),frequency=12)  
plot(data,main =”Time Series Plot of Receive Signal Level”, xlab="Time(year)", ylab="Receive Signal 

Level(dBm)")   

datadiff = diff(data, 12)   

plot(datadiff, main="Series:datadiff", xlab="Time(year)",ylab="Receive Signal  Level(dBm)")                        
load(“C:\\Users\\USER\\My Documents\\tsa3.rda”)  

acf2(datadiff,46)  

sarima(data,1,1,1,0,1,2,12)  
sarima(data,1,1,1,1,1,2,12) 

sarima(data,1,1,1,1,1,1,12)  

sarima(data,1,1,1,1,1,0,12)  
sarima.for(data,24,1,1,1,0,1,2,12) 

history()  

 

 


