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Abstract 
 

The paper aims at optimizing the heat sink dimensions by maximizing the heat dissipation and minimizing thermal 
resistance and pressure drop. In this paper, a Neural network model is built for a parallel-plain fin heat sink. The 

model is developed using an experimental data from the literature. In addition, a quadratic model equation of the 

affecting parameters is constructed and analyzed using Response Surface Methodology for determining the 

important factors affecting the performance of the heat sink, and the quadratic effect of every factor by using 
design of experiment, analysis of variance and regression analysis. The results of the neural network model are 

compared with the experiment and it is shown that the error does not exceed 13.54%. This value is considered 

small and acceptable for such system. 
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Introduction and literature review 
 

Electronic devices are used in many appliances that we are using every day, they generate massive amount of heat 
which causes total damage to the device's components. The damage can be prevented if the excessive heat is 

removed. This can be accomplished by installing a heat sink. A heat sink is a simple device that depends on 

conduction from electronic chips to the heat sink base, conduction from base to the surface area and followed by 
convection to the surrounding medium. It is designed such that heat dissipation is maximized and consequently 

thermal resistance and change in pressure between the two mediums are minimized.   
 

Recently several studies focused on finding the optimum design parameters and selection of heat sink with high 

thermal performance. Shah et al. (2004) presented a numerical analysis study of the performance of an 

impingement heat sink aiming at evaluating the possibility of improving the heat sink performance by improving 
the air flow characteristics near the center of the heat sink. The analysis compared between ten different fin 

geometries and several different heat sink base thickness values.   Cimtalay and Fulton (1994) have presented 

multiobjective optimization trade off problem to find the optimum parameters of heat sink in electronic printed 
board assembly. They used compromise decision support problem with constraints to optimize cost, heat and 

geometrical aspects. Chiang (2005) presented an effective method for predicting and optimizing the cooling 

performance of the parallel-plain fin heat sink module based on Taguchi method and analysis of variance.  
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The main objective of their study was to obtain the lowest value of the highest temperature (or thermal 
resistance). Other study for Chiang (2007) presented a systematic experimental design based on the response 

surface methodology (RSM) with quadratic model and four factors on parallel plate fin heat sink with ANOVA 

analysis. Chiang and Chang (2006) investigated the effect of design parameters on the thermal performance on the 
pin fin heat sink by means of RSM with quadratic model and four factors.  Chou et al., (2009) proposed the 

optimum design of a parallel plate heat sink using fuzzy grey relations and orthogonal arrays design of experiment 

which combines the fuzzy logic theory with the grey relational system. Chiang et al., (2006) presented the 

optimum design for a pin fin heat sink using the grey fuzzy logic based on the orthogonal arrays. Liu (2005) 
studied fuzzy optimum natural convection fin array design with constant heat transfer coefficient. In his work, the 

heat transfer rate was maximized for a given fin volume and array width in accordance with a prescribed 

tolerance. The author performed a comparison between the fuzzy model and the non-fuzzy optimum model. 
 

Naphon and Sookkasem (2007) presented a numerical study of the heat transfer characteristics of the in line and 

staggered taper pin fin heat sink under constant heat flux conditions. They also presented an experimental 
verification to analyze the problem. Yang and Peng (2009) presented a numerical study to investigate the effects 

of fin shape on the thermal performances of the heat sink with un-uniform fin width designs with an impingement 

cooling. Khan et al. (2008) presented a case study where they used an evolutionary optimization method for the 
determination of the optimal heat sink dimensions by maximizing the heat dissipation capabilities, such that the 

optimized dimensions are within realistic manufacturing constraints.  Husain and Kim (2009a) presented single 

objective optimization of micro channel heat sink based on the surrogate methods. They showed that pressure 

and/or pumping power constrained optimization limits the applicability pumping source used at the micro-level. 
In another study, Husain and Kim (2009b) presented an optimization study for a mixed (electroosmotic and 

pressure-driven) flow microchannel heat sink with the help of three-dimensional numerical analysis, surrogate 

methods, and the multi-objective evolutionary algorithm. They considered two design variables; the ratio of the 
microchannel width-to-depth and the ratio of the fin width-to-depth.  
 

In this paper, a neural networks model for the parallel plate heat sink is developed aiming at finding optimal 
dimensions of the heat sink. The heat sink dimensions and parameters to be studied are height of heat sink (H), 

thickness of each plate (T), and the gap between the plates (S). The neural networks model adopts the results of 

the experiment conducted by Chiang (2007).  The rest of the paper is organized as follows; section 2 presents the 

heat sink model under consideration. Section 3 presented a summary of the experiment developed by Chiang 
(2007). The results of this experiment are used in this study to develop the Neural networks model. Section 4 

presents the Neural network model for the heat sink under consideration. Section 5 presents the results of the 

response surface methodology in finding the important parameter affecting the heat sink. Results and discussion 
are presented in section 6. Section 7 presents the conclusion remarks and suggested future work. 
 

1. Heat Sink Model 
 

In this study an optimization procedure is developed in order to find the optimum dimensions of the heat sink that 

minimizes both the pressure drop across the heat sink and the thermal resistance of the heat sink. The heat sink 

dimensions and parameters to be studied are height of heat sink (H), thickness of each plate (T), and the gap 
between the plates (S). The thermal resistance of the heat sink is an important parameter that should be considered 

in designing the heat sink. It is given by the following equation, 

 

 
 

Where ΔT is the temperature difference between the highest temperature of the heat sink base, and the 

temperature in the inlet section, Q is the heat dissipation produced by the heating unit. Another important 
parameter is the pressure drop which is given by the following equation, 

 

 
 

Where  is the average pressure in the inlet of test section and  is the average pressure in the outlet of test 
section. 
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2. Experimental Setup 
 

Figure 1 shows the parallel plate heat sink under consideration. Chiang (2007) conducted an experiment for 

obtaining the thermal performance of parallel plate heat sink consists of heating unit, cooling chamber, tested heat 
sink and measuring devices. The results of this experiment will be used in this paper in developing the neural 

networks model. The parameters that will be considered are the height of the heat sink (H), the thickness of each 

fin (T) and the gap between fins (S).  
 

 

 
 

 

Figure 1: The parallel plate heat sink. 
 

Figure 2 shows the experimental setup developed by Chiang (2007). The heat sink is made of Aluminum with 

thermal conductivity of 209W/mK, the heating unit supplied the heat sink with heat load of 40W to simulate heat 

generated by electronic chips. The heat sink has a simulated cooling fan installed on top to allow exchange 

between surrounding air and heat sink. Thermal resistance is measured by using a thermocouple and data 
acquisition system while the pressure change is measured by static pressure tapping. By changing the heat sink 

dimensions, several readings on thermal resistance and pressure drop were measured. For more details on the 

experiment conducted the reader can refer to Chiang (2007). 
 

 

 
Figure 2: Experimental setup (Chiang (2007)). 
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Chiang (2007) represented the values of the parameters under consideration by considering the central composite 

design (CCD). Each parameter takes three levels low, medium and high levels. Table 1 shows the levels of the 

three parameters considered in this study. These parameters are selected with maximum and minimum boundaries 
and coded in the values of [-1(low), 0(mid), 1(high)] for simplicity. 

 

Parameter Levels 

-1(low) 0(mid) +1(high) 

Fin height, H 45 52.5 60 

Fin thickness, T 1 1.5 2 

gap between fins, S 3 4 5 
 

Table 1:  Design parameters levels as represented by Chiang (2007). 
 

The data obtained from the experiment conducted by Chiang (2007) are both the thermal resistance (Rth) and the 
pressure drop between the two mediums (ΔP). The results are shown in Table 2. The first three design parameters 

are the fin height, the fin thickness and the gap between the fins. These three parameters will be considered in this 

study. 
 

Table 2: Data obtained from experiment conducted by Chiang (2007). 
 

Run no. Design parameters Experimental results 

 H T S Rth ΔP 

1 -1 -1 -1 0.4238 26.27 

2 +1 -1 -1 0.2673 16.57 

3 -1 +1 -1 0.4301 26.66 

4 +1 +1 -1 0.2751 17.05 

5 -1 -1 +1 0.4257 26.39 

6 +1 -1 +1 0.2692 16.69 

7 -1 +1 +1 0.4322 26.79 

8 +1 +1 +1 0.2772 17.18 

9 -1 -1 -1 0.4272 26.48 

10 +1 -1 -1 0.2708 16.78 

11 -1 +1 -1 0.4335 26.87 

12 +1 +1 -1 0.2786 17.27 

13 -1 -1 +1 0.4291 26.60 

14 +1 -1 +1 0.2727 16.90 

15 -1 +1 +1 0.4356 27.02 

16 +1 +1 +1 0.2807 17.41 

17 -1 0 0 0.4901 30.38 

18 +1 0 0 0.1787 11.07 

19 0 -1 0 0.3498 21.68 

20 0 +1 0 0.3641 22.57 

21 0 0 -1 0.3553 22.02 

22 0 0 +1 0.3593 22.27 

23 0 0 0 0.3550 22.01 

24 0 0 0 0.3619 22.43 

25 0 0 0 0.3569 22.12 

26 0 0 0 0.3568 22.12 

27 0 0 0 0.3568 22.12 

28 0 0 0 0.3570 22.13 

29 0 0 0 0.3568 22.12 

30 0 0 0 0.3566 22.11 
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3. Neural Network Model of Heat Sink 
 

Since the data obtained from the experiment conducted by Chiang (2007), which are shown in Table 2 is in the 

form of pairs of inputs and outputs, it can be used to build the neural network model by training the network using 

these data and then produce a general model of the heat sink that can be used to measure the thermal performance 

by inputting the dimensions of the heat sink. 
 

The network is built with three inputs (H, T and S) and two outputs (R th and ΔP) with one hidden layer that 
contains three neurons, so the design is 3-3-2 network. The training data are the data from Chiang’s experiment 

which are presented in table 2. Figure 3 demonstrates the relationship between the training data and the network 

output after training. As can be seen from Figure 3 the error between the training data (target) and the NN output 
is small and the points almost fit. This may be improved by several factors such as increasing the number of 

epochs, increasing learning rate, decreasing goal, etc. 
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           Figure 3: Training set versus NN output for every input and output 
 

The heat sink Neural networks model for parallel plate can be generalized for any input values. Figure 4 

illustrated the Simulink representation of the neural network model for the parallel plate heat sink, where the 

inputs are entered as a column vector and the outputs are calculated based on the neural network model and will 
be displayed. The figure shows the outputs for the given inputs [60; 2; 3]. 
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Figure 4: Simulink Neural network representation. 
 

4. Response Surface Methodology 
 

A Response Surface Methodology (RSM) is a collection of statistical and mathematical procedures that relates 

between the process parameters and the desired response and is useful in modeling and analysis problems that 
needs to be optimized. RSM can be used for finding a quadratic model that has the main effect, interaction effect 

and the quadratic effect of every factor by using design of experiment, analysis of variance and regression 

analysis. The RSM will be used in this work to determine the important parameters that affect the systems 
response. 
 

The factors considered for RSM design are height (H), thickness (T) and gap (S), while the responses are thermal 
resistance (Rth) and pressure change (ΔP).The design will be three factors and two responses with one replicate, 

two levels (low  ( -1) and high (1)) and six central points. The type of RSM is central composite design (CCD). 

The total number of runs is 20 as shown in Table 3. The data are obtained from Table 2. 
 

Table 3: design for the heat sink model using Minitab 
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Chiang (2007) summarizes the seven steps that are used for determination of the design parameters with optimal 

performance characteristics. These steps are summarized as follows (Chiang, 2007): 
 

1. Defining the independent input variables and desired responses with the design constraints. 
2. Adopting the face centered to plan the experimental design. 

3. Performing the regression analysis with the quadratic model of response surface. 

4. Calculating the statistical analysis of variance (ANOVA) for the independent input variables and to find 
the parameter significantly affects the desired response. 

5. Determining the situation of the quadratic model of the response surface and to decide whether the model 

of RSM needs screening variables or no. 
6. Obtaining the optimal machining parameters with the design constraints using the sequential 

approximation optimization (SAO) method. 

7. Conducting confirmation experiment and verify the optimal machining parameters setting. 
  

5. Results and Discussion 
 

6.1 The Neural Network Model Results 
 

A simulation procedure is carried out to evaluate both outputs using the neural networks model after training. The 

results of the Neural network model are compared with the experimental results developed by Chiang (2007). 

Table 4 illustrated a comparison between the results of the Neural network model and the experimental values in 

Rth and ΔP for 10 experiments. As can be seen from Table 4 the error is very small and does not exceed 14% for 
both Rth and ΔP.  
 

Table 4: Comparisons between NN model and experimental values in Rth and ΔP. 
 

Number 
H 

(mm) 

T 

(mm) 

S 

(mm) 

Experimental value NN value % Error in 

Rth ΔP Rth ΔP Rth ΔP 

1 45 1 3 0.4238 26.27 0.4312 26.73 1.716 1.72 

2 52.5 1.5 4 0.3566 22.11 0.3573 22.15 0.196 0.18 

3 60 2 5 0.2807 17.41 0.27 16.74 3.96 4 

4 60 2 3 0.2751 17.05 0.2667 16.53 3.15 3.14 

5 45 2 5 0.4322 26.79 0.4402 27.29 1.817 1.83 

6 45 1.5 4 0.4901 30.38 0.4361 27.03 12.38 12.39 

7 52.5 1.5 3 0.3553 22.02 0.3546 21.98 13.54 0.182 

8 52.5 1 3 0.3498 21.68 0.3459 21.44 1.13 1.12 

9 60 1 5 0.2727 16.9 0.2599 16.11 4.92 4.9 

10 60 1.5 5 0.2692 16.69 0.2647 16.41 1.7 1.7 

 

6.2 The Response Surface Methodology (RSM) Results 
 

RSM is employed and the results of the analysis of variance (ANOVA) shows that for the thermal resistance (R th), 

the important factors in order are A, A
2
, C

2
, B

2
, B, C, BC and AB while AC is neglected compared to others. 

Where A represents the height (H), B represents the thickness (T) and C represents the gap (S).  So mainly, the 
liner parameters and the quadratic parameters are significant while the interaction parameters are not that 

significant. For the pressure drop (ΔP), the important factors in order are A, A
2
, C

2
, B

2
, B, C, BC and AB, while 

AC is neglected compared to others. So mainly, the liner parameters and the quadratic parameters are significant 
while the interaction parameters are not that significant. The results are tabulated in Tables 5 and 6. The 

regression models for Rth and ΔP in coded units are: 
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Table 5: RSM results for Rth.  
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Table 6: RSM results for ΔP.  
 

 
 

In Table 7 the results of the RSM methodology is compared with the results of the experiment conducted by 

Chiang (2007). As can be seen the resulted height of the heat sink (H) is the same as the one in the experiment 

with zero error, in the other hand the resulted thickness (T) and gab between fins(S) showed variation from that of 
the experimental values with error of 4.78% and 13.85% respectively. This error is acceptable. From the ANOVA 

analysis, the most important factor that affects the thermal performance of the heat sink is the height then 

thickness then gap. 
 

Table 7:  Results of the RSM compared with experimental results 
 

 RSM Experimental Error 

H (mm) 60 60 0% 

T (mm) 1.1238 1.07 4.78% 

S (mm) 3.8537 3.32 13.85% 

 

6. Conclusion 
 

In this study a parallel plate heat sink was modeled using neural network. The responses of the heat sink that are 

under study are thermal resistance and pressure change between the inside and the outside while the parameters 

design are height, thickness and gap between fins.  
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Neural network model is developed using experimental data from the literature, the results of the Neural network 
model showed maximum error of less than 13.54% compared with the experimental results.  The neural network 

may be trained with a larger number of examples but care should be taken to avoid overtraining. 
 

Response surface methodology is employed for determining the important factors affecting the performance of the 

heat sink, and the quadratic effect of every factor by using design of experiment, analysis of variance and 
regression analysis. The optimum dimensions that minimize thermal resistance and pressure change as obtained 

by response surface methodology are, height of 60 mm, thickness of 1.1238 mm and gap between fins of 3.8537 

mm. with a maximum error of 13.85% compared with the experimental data. It is found that the height is the most 

important factor affecting the thermal performance. 
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