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Abstract 
 
Process capability is the performance of a process under normal and in-control conditions. Its indices are to 
measure the inherent variability of a process and thus to reflect its performance. To calculate the capability 
indices for key characteristics, most industries normally assume that the distribution of their process output is 
normal. However, in practice, most key quality characteristics do fails the normality test and thus the accuracy of 
normal based process capability indices becomes doubtful and hence they cannot really reflect the performance 
of a process. This paper proposes the determination of the common process capability indices based on the 
median absolute deviation. The median absolute deviation is a robust estimate of variability when the sample data 
are non- normal or are skewed. Real process data and simulated process data from heavily skewed distributions 
are presented to demonstrate the application of the proposed indices and the results were compared with the 
existing indices for non-normal and skewed process data.  
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1. Introduction 
 
Process capability analysis deals with how to assess the capability of a manufacturing process, where information 
about the process is used to improve the capability. One can determine how well the process will perform relative 
to product requirement or specifications. Process capability analysis is to predict how well the process will hold 
the tolerance. It is very useful for assisting product developers and process developers in selecting or designing 
product/process, evaluating and selecting among competing vendors and determining the bottleneck process in 
terms of process quality. Process capability is the performance of a process under normal and in-control 
conditions. Its indices are to measure the inherent variability of a process and thus to reflect its performance. 
Process capability studies are conducted and their associated measures determined under the assumption that the 
process variation is due only to random causes, and are in fact valid only when the process under investigation is 
free from any special or assignable cause (Spring, 1991). Pan and Wu (1997) presented the following benefits for 
process capability analysis: (i) continuously monitoring the process quality through the capability indices in order 
to assure that the products manufactured are conforming to the specifications. (ii) supplying information on 
product design and process quality improvement for engineers and designer, and (iii) providing the basis for 
reducing the cost of product failures. 
 

To calculate and measure the quality characteristics in the industry, one usually assumes that the distribution of 
measurements follows a normal distribution, and then calculates its process capability indices without verifying 
their accuracy. 
 

The process capability ratio, also called the Cp index, is commonly used to measure the process quality. It 
assumes that the distribution of the process output is normal. The Cp index is defined as: 
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where USL is the upper specification limit, LSL is the lower specification limit, and σ  is the standard deviation. 
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The Cpk index proposed by Sullivan (1985) is a measure of the capability of a process in relation to the process 
average. It is based on the distance between the process average and the closest specification limit, and is defined 
as 
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Tau (1997) modified the above formular for Cpk to become 
 

Cpk = Cp (1 - k)                                                                                                                               (3) 
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Chan et al. (1988) proposed another index, called Cpm which is defined as 
 

2-16 











 T

LSLUSLC pm                                                                                                               (4) 

 
The preceding  equations are the process capability indices when the normality assumption is not violated. Gunter 
(1989) identified three non-normal distributions with the same mean and standard deviation as those of a normal 
distribution: (1) chi-squared distribution with 4.5 d.f.; (2) t distribution with 8 d.f. and (3) uniform distribution. 
Although having the same Cp and Cpk indices, the defects falling outside plus or minus 3σ  are significantly 
different. Thus, Gunter (1989) stated that the defects in parts per million parts (ppm) for a (i) chi-squared 
distribution is 14,000; (ii) for t distribution, 4000; and (iii) for uniform distribution, zero; while the ppm for 
normal distribution is 2700. Therefore, if the distribution of measurements of process output violates the 
assumption of normal distribution, its process capability indices are very questionable (Pan and Wu,1997).  
Clements (1989) used a Pearson distribution curve to estimate the non-normal process capability index. If the 
distribution of measurements of a quality characteristic belongs to the Pearson family of probability curves 
consisting of normal, lognormal, t, F, beta and gamma distributions, then  P(LPL < µ< UPL) = 1 - 0:0027 = 
0:9973. If the process mean is replaced by median, UPL is the 99.865 percentile, and LPL is the 0.135 percentile 
of the Pearson family. The non-normal process capability indices are defined as: 
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where Xp = p*100th  percentile.  
 

Rodriguez (1992) suggested using the goodness of fit test instead of finding its Pearson distribution curve to 
determine a specific distribution. The maximum likelihood estimation (MLE) method can also be used to estimate 
its parameters and percentiles. 
 

Vännman (1995) proposes the superstructure which unifies the four basic process capability indices (PCIs), 
namely Cp, Cpk, Cpm and Cpmk as follows 
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where u and v are non-negative constants that takes value 0 or 1. Here, ,
2 2

USL LSL USL LSLd m- += =  and T is 

the target value. It should be noted that if T is unknown, then T = m is often used (Pearn and Kotz, 2006). The 
process mean is µ and the process standard deviation is σ. 
 

From Equation (5), the four capability indices can be deduced to become 
 

 

( , )pC u v =





















1.1
1,0,

0,1,

0,0,

vuC
vuC

vuC

vuC

pmk

pm

pk

p

                                                                                           (6) 

 
 

Chen and Pearn (1997) modified Vännman (1995) Cp(u, v) and proposed a quantile based PCI superstructure 
without implicitly assuming normality of the underlying process for a two sided specifications defined by  
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Vännman and Albing (2007) proposed family of quantile based process capability indices (qPCI) and ),(C MA ητ . 
Peng (2010) extends the work of Vännman and Albing (2007) by developing both asymptotic parametric and non-
parametric confidence limits and testing procedures of ),(C MA ητ . Chao and Lin (2005) proposed a very general 
process yield - based PCI as follows  
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where Φ is the CDF of the standard normal distribution, F(.) and θ are the CDF and the vector of parameters of 
the underlying process distribution. This paper proposes the process capability indices under non-normal 
distribution, using the median absolute deviation as an estimate of the process variation. 
 

2.  Median Absolute Deviation Based Process Capability Indices 
 

Let Xij represent a random sample of size n taken over m subgroup, i = 1, 2,……., n and   j = 1,2,…,m. The sample 
are assumed to be independent and taken from a continuous identical distribution functions. If σ2 is unknown, 
then an unbiased estimate of σ2 is the sample variance (S2). In practice, the normality assumption is often violated 
by real life data, therefore, using S2 as an estimate of σ2 will affect the process capability indices and thus this 
might leads to wrong signal and invalid inference. The median absolute deviation (MAD) has been claimed in the 
literature to be the best estimate of sigma (σ) when the data under consideration is non-normal (see e.g. Abu-
Shawiesh (2008) and Shahriari, Maddahi, and Shokouhi (2009)). Therefore, if MAD is used as an estimate of 
variability (i.e. σ), then we have 
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where MDj is the median of the jth rational subgroup or sample. It should be noted that the values of bn can be 
obtained in Adekeye (2012) and Abu-Shawiesh (2008). Using MAD as an estimate of σ, then the Chen and Pearn 
(1997) modification of Vännman (1995) can be further modified by substituting Equation (9) into Equation (5). 
Thus, we have 
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where M= Median(Xij ), d and m are as earlier defined.  
 

Therefore, from Equation (10), using the definition in Equation (6), The Cp index based on MAD will be 
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 Similarly, the Cpk index based on MAD will be defined by  
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The Cpm index will be estimated by 
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The Cpmk index will be estimated by 
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3. Results 
 

3.1. Gain of Amplifier Data 
 

A sample of 120 amplifiers is taken to estimate the capability of the manufacturing process which produces them. 
The quality characteristic of interest is the gain of an amplifier. It has a lower specification limit of 7.75 decibels, 
an upper specification limit of 12.2 decibels and the target value is placed at 10.0 decibels. The data for this 
process is contained in Osanaiye et al. (2001). The data was tested for normality using the Kolmogrov-Smrinov 
goodness of test and Shapiro-Wilk test. To test for the stability of the process, the data was arranged into 24 
subgroups with five sample per subgroup. Thus, X and R was used to monitor the process, and the results reveals 
that the process that produces the data was a stable process. Using Equation (9) the MADj for the rational 
subgroups were determined to obtain the MAD . The results of the preliminary analysis using S-plus 4.5 and 
SPSS 18 are presented in Table 1. 

 

Table 1. Summary of Preliminary Results for the Steel Rod Data 
 

n X  R  q0.135 q99.865 SK Kurtosis K-S Test p-value MAD  M 
120 9.041 2.083 7.87 11.7 0.712 0.205 0.089 0.02 0.785 8.9 

 

M = q50, SK = Coefficient of Skewness and K-S Test = Kolmogrov - Sminorv test. 
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It is clear from the results in Table 1 and as confirmed by the histogram and CDF plot of the data, that the data is 
from a non- normal positively skewed distribution. The process capability indices based on the MAD are 
determined using Equations (12) through (15) using the preliminary results in Table 1. The obtained process 
capability indices are presented in Table 3a. 
 

3.2. Thickness of Tablet Data 
 

300 sample of the measured thickness of tablets were collected from the record book of a company in Nigeria for 
the period of 30 months with the sample size of 10 tablets per month. The specification limits for thickness of the 
tablet is 3:57 - 3:97 (mm). Using Equation (9) the MADj for the rational subgroups were determined and used to 
obtain the MAD . The results of the preliminary analysis (see Table 2) indicate that the sampled data is not from a 
normal distribution but from a negatively skewed distribution. The process capability indices based on the MAD 
are determined and summarized in Table 3b. 
 
 

Table 2. Summary of Preliminary Results 
 

n X  R  q0.135 q99.865 SK Kurtosis K-S Test p-value MAD  M 
300 3.799 0.1260 3.57 3.98 - 0.391 -1.28 0.181 0.0 0.1048 3.84 

 
 
 

3.3. Simulated Data 
 

Two data sets were generated from exponential distribution and Weibull distribution respectively. These two 
distributions are heavily positively skewed and are widely used in engineering, particularly in engineering 
reliability modeling. The generated process data is used to confirm the behaviour of the proposed capability 
indices and to compare its behaviour with the quantile based capability indices. For the exponential process data, 
we generated a random sample of size 300 from Exponential population with the mean rate λ = 0.5. The sampled 
data was arranged into 30 subgroups each with sample size 10. The data was tested for stability using control 
charts which confirmed the stability of the process. The information of the control limits was used to fix the 
specification limits to USL = 4.0 and LSL = 0.20. The computed capability 
indices are presented in Table 3c. 
 

For the Weibull process data, a random sample of size 300 was generated from Weibull population with scale 
parameter θ = 2.2 and shape parameter β = 1.5. The sample data was arranged into 30 subgroups each with a 
sample of size 10. The generated data was confirmed to be stable using an appropriate control chart. The 
information of the control limits was used to fix the specification limits as USL = 5.0 and LSL = 0.50. The 
computed capability indices are presented in Table 3d. 
 

Table 3. Summary of Process Capability Indices Results 
 

(a)Gain of Amplifier (b)Thickness of Tablet (c)Exponential data (d)Weibull data 
Cp    Cpk    Cpm     Cpmk Cp     Cpk     Cpm     Cpmk  Cp    Cpk     Cpm    Cpmk  Cp      Cpk    Cpm   Cpmk 
0.78  0.59   0.51    0.39 0.59   0.48   0.50    0.41 1.03   0.84   0.90   0.73 0.70   0.35  0.48  0.24 

 

The results in Table 3 are compared with the process capability indices based on the quantile (see Equation (7)). 
Table 4 presents the summary of the results using the two real (manufacturing) process data and the generated 
highly skewed process data. 
 

Table 4. Comparison of Process Capability Indices Results 
 

PCI Gain of Amplifier Thickness of Tablet Exponential data Weibull data 

Quantile      MAD Quantile           MAD Quantile          MAD Quantile      MAD 

Cp 
Cpk 
Cpm 
Cpmk 

1.14                 0.78 
0.59                 0.59 
0.58                 0.51 
0.30                 0.39 

0.96                  0.59 
0.63                  0.48 
0.84                  0.50 
0.55                  0.41 

0.76                  1.03 
0.61                  0.84 
0.70                   0.90 
0.57                   0.73 

0.28                0.70 
0.14                0.35 
0.24                0.48 
0.12                0.24 
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4. Discussion 
 

The results in Table 4 reflect that the Cp values for both the proposed and the quantile based are higher than the 
other capability indices. Furthermore, the quantile based indices are higher than the indices based on the MAD for 
the two real data considered in this study. However, for the positively skew data (Gain of Amplifier), it can be 
seen that the indices Cpk, Cpm, and Cpmk are either equal or almost equal. This is an indication that for a positively 
skewed data, the proposed MAD based capability indices and quantile based capability indices will give the same 
percentage of non-conforming defects and thus, the same parts per million (ppm) defects. For a negatively skewed 
data, the quantile based capability indices are higher than the MAD based capability indices. Therefore, the parts 
per million defects that will be reported using the quantile based indices will be higher than the MAD based 
indices. However, for the heavily skewed process data (exponential and Weibull data), it is clear that the MAD 
based indices are higher than the quantile based and thus gives a better indices than the quantile based indices. It 
should be noted that the obtained indices from the proposed approach reflect that the process that produces the 
data considered in this study are not capable. 
 

5. Conclusion 
 

This study has proposed the use of median absolute deviation (MAD) for the determination of process capability 
indices for a non-normal data. From the obtained results and comparison made, it can be concluded that the 
proposed method did not give any significant improvement over the results that are based on the quantile as a 
measure of variability for a slightly skewed data while there exist significant improvement in cases of heavily 
skewed process data. Furthermore, the method seems to be simple and does not need any rounding off values 
which is the experience in the determination of quantile values needed to compute quantile based indices. 
Therefore, engineers and users of process capability are encourage to use the propose capability indices when the 
process data is heavily skewed to the right. 
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