
International Journal of Applied Science and Technology Vol. 3 No. 6; August 2013

67

Simulating Binary Search Technique Using Different Sorting Algorithms

B. G. Balogun

Department of Computer Science
University of Ilorin

Ilorin, Nigeria

J. S. Sadiku
Department of Computer Science

University of Ilorin
Ilorin, Nigeria

Abstract

In this study, the binary search method is simulated using twenty different data sets. The data are all numeral and
generated randomly. The objective is to find out which sorting method should be used if there is need to apply
binary search method on unsorted data. Another objective is to establish the extent to which binary search is
efficient. To achieve these objectives a C# code is developed. The code generates the required random numbers, it
also sorts them using bubble sort, insertion sort, and quick sort techniques before applying the binary search
algorithm. The internal clock of the computer is set to monitor the time durations of the computations. The results
show that except for small data sets both the bubble and insertion sort methods should not be employed. Rather
the quick sort method should be used to sort large data sets. This agrees with the existing asymptotic analysis of
the complexities of these sorting methods. However, the insertion sort performs better than does bubble sort. It is
also observed that linear search may be preferred to binary search if searching is to be carried out on unsorted
data.

Keywords: Binary search, simulation, sorting, algorithms

1. Introduction

Many of the tasks of computer science in general, and artificial intelligence in particular can be phrased in terms
of a search for the solution to the problem at hand. Indeed, basic search techniques provide the key to many
historically important accomplishments in the area of artificial intelligence.

These include applications in such areas as (Firebaugh 1987)

 Board games and puzzles (Tic-tac-toe, chess, Towers of Hanoi)
 Scheduling and routing problems (Traveling salesman Problem)
 Language parsing interpretation (search for structure and meaning)
 Logic programming (search for facts and implications)
 Computer vision and pattern recognition
 Rule-based expert systems

An important property of most of the significant search problems studied in artificial intelligence is that they
suffer from combinatorial explosion. That is, the number of states which must be searched generally grows very
rapidly with the size and complexity of the system studied. Various strategies for effective search have emerged;
some of them are;

 Binary search
 Breadth – First Search
 Depth – First Search
 Hill – Climbing heuristic
 Best – First heuristic

In this study we consider binary search technique. This technique has been found to be a very efficient method of
searching. It is a divide-and-conquer method; its disadvantage is that it cannot be applied on unsorted data.

© Center for Promoting Ideas, USA www.ijastnet.com

68

A binary search problem can be stated as follows:

Let ai, 1< i < n be a list of elements which are sorted in non-decreasing order. Consider the problem of
determining whether a given element x is present in the list.
In case x is present, we are to determine a value j such that aj = x. if x is not in the list then j is to be set to zero.
Divide-and-conquer suggests breaking up any instance I1 = (k-l, a1,… ak-1, x), I2= (1, ak, x) and I3 = (n-k, ak+1,…an,
x).

The search problem for two of these three instances is easily solved by comparing x with ak. If x = ak then j = k
and I1 and I3 need not be solved. If x<ak then for I2 and I3, j = o and only I1 remains to be solved. If x>ak , then for
I1 and I2, j= 0 and only I3 remains to be solved. After a comparison with ak, the instance remaining to be solved (if
any) can be solved by using this divide-and-conquer scheme again. If k is always chosen such that ak is the middle
element then the resulting search algorithm is known as binary search (Ellis Horowitz, 1978; Mark Allen, 2007)

Procedure BINSRCH (A, n, x, j)
// given an array A(1:n) of elements in nondecreasing order,//
// n>=o, determine if x is present, and if so, set j such that x =A(j)//
// else j = o.//
Integer low, high, mid, j, n;
low < 1; high < n
while low <= high do
mid < [(low + high)/2]

Case
 : x<A (mid): high< mid – 1
 : x<A (mid): low < mid + 1
 : else: j< mid; return
 endcase
repeat
j < 0

 endBINSRCH

Algorithm 1: Binary Search

2. Research Motivation and Methodology

Binary search has been found to be very efficient searching technique for sorted data (Francis Shield; 1983). This
assertion however does not state categorically the method used in accomplishing the sorting in the first instance,
meaning that all has not been said about the efficiency of the binary search. The efficiency, given that the data
items have been sorted is O(logN) while the efficiency of the linear search is O(N).

It is necessary therefore to take into consideration the efficiency of the sorting technique employed in sorting the
data before applying binary search. This is the focus of this study. For this purpose three sorting techniques are
considered namely: bubble sort, insertion sort and quick sort. They are applied one at a time on the sets of data
items used on the study before the application of binary search technique. The objective is to know at what point
should the sorting methods be used in order to get optimal efficiency. In other words, should we always use quick
sort, bubble sort or insertion sort (among others)?

To achieve the objective 20 different data sets are generated randomly. The sizes of the sets (all of which are
numeral) are 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000,
80,000, 90,000, 100,000, 200,000, 300,000 and 400,000.

A C# code to accomplish the following is then written.
 Generate random numbers for the 20 sets listed above
 Implement bubble sort
 Implement insertion sort
 Implement quick sort
 Implement linear search
 Implement binary search

International Journal of Applied Science and Technology Vol. 3 No. 6; August 2013

69

The code also sets the system clock to know the duration of time taken by different computations.
The following computations are done and the time used on them by the computer noted.

BinBS = Bubble sort based binary search
 BinQS = Quick sort based binary search
 BinIS = Insertion sort based binary search
 BS = Binary search only
 Lin = Linear search only

3. Results and Analysis

The C# code and the outputs are presented below. The outputs are grouped into two. The first group consists of
data sets 50 to 100000; while the second group consists of data sets 100000 to 400000. The second group is
considered as containing fairly large sets and so only the quick sort results in addition to the BS and Lin results
are displayed.

3.1
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
namespace TestCompareNew

{class Program
 { static void Main(string[] args)
 {Stopwatch s = new Stopwatch();

 int MaxData = 100000;

Repeat: Console.Clear();
int[] DataSet = { 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000,
90000,MaxData };

Random random = new Random();
Console.WriteLine("|-------|---------------|----|---------------|---------------|");
Console.WriteLine("|-------|---------------|--This will return only time spent in millisecond--|---------------|------------
---|");
Console.WriteLine("|-------|-----------------------|-----------------------|-----------------------|-----------------------|");
Console.WriteLine("|Set\t|\tBinBS\t\t|\tBinQS\t\t|\tBinIS\t\t|\tLin\t\t |");
Console.Write("|-------|-----------------------|-----------------------|-----------------------|-----------------------|");

int[] NumArray = new int[MaxData];

NumArray = RandomNumber(MaxData);

for (int i = 0; i < DataSet.Length; i++)
{
int ind = DataSet[i] - 1;

///

///

/////////////Bubble sort and Binary Search starts/////////
 int[] NumArray1 = PickRandomNumber(NumArray, 0, DataSet[i]);
 s.Start();

 int[] ArrayNum = BubbleSort(NumArray1);
 int SearchedVal = BinarySearch(ArrayNum, NumArray1[ind]);
s.Stop();

© Center for Promoting Ideas, USA www.ijastnet.com

70

Console.Write("\n|" + DataSet[i]);
Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds+"\t");

/////////////Bubble sort and Binary Search ends/////////

/////////////Quick sort and Binary Search starts/////////
int[] NumArray2 = PickRandomNumber(NumArray, 0, DataSet[i]);
s.Restart();
ArrayNum = quickSort(NumArray2, 0, NumArray2.Length - 1);

SearchedVal = BinarySearch(ArrayNum, NumArray2[ind]);
 s.Stop();

Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds + "\t");

/////////////Quick sort and Binary Search ends/////////

/////////////Insertion sort and Binary Search starts/////////
int[] NumArray3 = PickRandomNumber(NumArray, 0, DataSet[i]);
s.Restart();
ArrayNum = InsertSort(NumArray3);

SearchedVal = BinarySearch(ArrayNum, NumArray3[ind]);
s.Stop();

/////////////Insertion sort and Binary Search ends/////////
Console.Write("\t|\t" + s.Elapsed.TotalMilliseconds + "\t");

/////////////Linear Search starts/////////
int[] NumArray4 = PickRandomNumber(NumArray, 0, DataSet[i]);
s.Restart();

SearchedVal = LinearSearch(NumArray4, NumArray4[ind]);
s.Stop();

Console.WriteLine("\t|\t" + s.Elapsed.TotalMilliseconds + "\t\t|");
Console.Write("|-------|-----------------------|-----------------------|-----------------------|-----------------------|");

/////////////Linear Search ends/////////
 }

 Console.WriteLine("\nDo you want to repeat the simulation? 1 -- Yes; 0 -- No ");
 string resp = Console.ReadLine();
 if (resp == "1")
 {
 goto Repeat;
 }
 else if (resp == "0")
 {
 Console.WriteLine("Good Bye");
 Console.ReadLine();

 }

 }

 public static int[] RandomNumber(int ListNum)
 {
 Random randomNew = new Random();
 int[] Number = new int[ListNum];
 for (int i = 0; i < ListNum; i++)
 {

International Journal of Applied Science and Technology Vol. 3 No. 6; August 2013

71

 int num = randomNew.Next();
 Number[i] = num;

 }
 return Number;
 }

 public static int[] PickRandomNumber(int[] FromArray, int init, int ListNum)
 {
 Random randomNew = new Random();
 int[] Number = new int[ListNum];
 int icount = 0;
 for (int i = init; i < ListNum; i++)
 {
 Number[icount] = FromArray[i];
 icount++;

 }
 return Number;
 }

 //////// BubbleSort
 public static int[] BubbleSort(int[] array)
 {
 int temp;
 int j;
 int i = array.Length - 1;
 while (i > 0)
 {
 int swap = 0;
 for (j = 0; j < i; j++)
 {
 if (array[j].CompareTo(array[j + 1]) > 0)
 {
 temp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = temp;
 swap = j;
 }
 }
 i = swap;
 }
 return array;
 }

 //??/////Insertion Sort
 static int[] InsertSort(int[] array)
 {
 int i, j;

 for (i = 1; i < array.Length; i++)
 {
 int value = array[i];
 j = i - 1;
while ((j >= 0) && (array[j].CompareTo(value) > 0))
 {
 array[j + 1] = array[j];

© Center for Promoting Ideas, USA www.ijastnet.com

72

 j--;
 }
 array[j + 1] = value;
 }
 return array;
 }
 //////// QuickSort
 private static void quickSwap(int[] Array, int Left, int Right)
 {
 int Temp = Array[Right];
 Array[Right] = Array[Left];
 Array[Left] = Temp;
 }

 public static int[] quickSort(int[] Array, int Left, int Right)
 {
 int LHold = Left;
 int RHold = Right;
 Random ObjRan = new Random();
 int Pivot = ObjRan.Next(Left, Right);
 quickSwap(Array, Pivot, Left);
 Pivot = Left;
 Left++;

 while (Right >= Left)
 {
 int cmpLeftVal = Array[Left].CompareTo(Array[Pivot]);
 int cmpRightVal = Array[Right].CompareTo(Array[Pivot]);

 if ((cmpLeftVal >= 0) && (cmpRightVal < 0))
 {
 quickSwap(Array, Left, Right);
 }
 else
 {
 if (cmpLeftVal >= 0)
 {
 Right--;
 }
 else
 {
 if (cmpRightVal < 0)
 {
 Left++;
 }
 else
 {
 Right--;
 Left++;
 }
 }
 }

 }
 quickSwap(Array, Pivot, Right);

International Journal of Applied Science and Technology Vol. 3 No. 6; August 2013

73

 Pivot = Right;
 if (Pivot > LHold)
 {
 quickSort(Array, LHold, Pivot);
 }
 if (RHold > Pivot + 1)
 {
 quickSort(Array, Pivot + 1, RHold);
 }

 return Array;
 }

 public static int BinarySearch(int[] array, int value)
 {
 int low = 0, high = array.Length - 1, midpoint = 0;

 while (low <= high)
 {
 midpoint = low + (high - low) / 2;

 // check to see if value is equal to item in array
 if (value == array[midpoint])
 {
 return midpoint;
 }
 else if (value < array[midpoint])
 high = midpoint - 1;
 else
 low = midpoint + 1;
 }

 // item was not found
 return -1;
 }

 public static int LinearSearch(int[] array, int item)
 {
 int searchItem = item;

 int len = array.Length;
 for (int j = 0; j < len; j++)
 {
 if (array[j] == searchItem)
 {
 return j;

 }
 if (j == len - 1)
 {
 return -1;
 }
 }
 return -1;

 }

 }

}

© Center for Promoting Ideas, USA www.ijastnet.com

74

|-------|---------------|----|---------------|---------------|
-------	---------------	--This will return only time spent in millisecond--	---------------	---------------
Set	BinBS	BinQS	BinIS	Lin
-------	-----------------------	-----------------------	-----------------------	-----------------------
50	0.9674	1.6193	0.5427	0.3727
-------	-----------------------	-----------------------	-----------------------	-----------------------
100	0.4997	0.6948	0.0538	0.0032
-------	-----------------------	-----------------------	-----------------------	-----------------------
200	0.5023	1.5506	0.1751	0.0051
-------	-----------------------	-----------------------	-----------------------	-----------------------
500	4.0547	3.8436	1.072	0.0083
-------	-----------------------	-----------------------	-----------------------	-----------------------
1000	12.6108	8.0684	4.4294	0.0147
-------	-----------------------	-----------------------	-----------------------	-----------------------
2000	50.6395	16.099	17.1159	0.0256
-------	-----------------------	-----------------------	-----------------------	-----------------------
5000	321.5405	37.1292	131.5038	0.0603
-------	-----------------------	-----------------------	-----------------------	-----------------------
10000	1285.5006	71.8507	436.5314	0.1174
----------	--------------------	-----------------------	-----------------------	-----------------------
20000	5150.9551	168.4701	1741.1228	0.2328
----------	---------------------	-----------------------	-----------------------	-----------------------
30000	11638.3872	226.806	4145.6249	0.6781
----------	---------------------	-----------------------	-----------------------	-----------------------
40000	20414.1276	292.9878	6933.4839	0.4709
----------	---------------------	-----------------------	-----------------------	-----------------------
50000	31203.4899	372.8973	10917.2642	0.5787
----------	---------------------	-----------------------	-----------------------	-----------------------
60000	45536.2483	468.4171	16241.34	0.6961
----------	---------------------	-----------------------	-----------------------	-----------------------
70000	63380.0997	505.5233	21143.4313	0.818
----------	---------------------	-----------------------	-----------------------	-----------------------
80000	82410.0914	622.7206	29061.6939	0.9232
----------	--------------------	-----------------------	-----------------------	-----------------------
90000	112526.9173	700.1806	36341.1778	1.0643
---------	----------------------	-----------------------	----------------------	-----------------------
100000	126516.8047	774.3558	45896.8454	1.158
-------	------------------------	-----------------------	----------------------	-----------------------
Do you want to repeat the simulation? 1 -- Yes; 0 – No

|--Return only Qick with Binary Search, Binary Search Only and Linear Search--|
|-----------|-------------------------------|-------------------------------|-------------------------------|
Set	BinQS	BS	Lin
100000	819.4682	0.0032	1.67
-----------	-------------------------------	-------------------------------	-------------------------------
200000	1637.5814	0.0032	2.3353
-----------	-------------------------------	-------------------------------	-------------------------------
300000	2477.2522	0.0057	3.5299
-----------	-------------------------------	-------------------------------	-------------------------------
400000	3267.3536	0.0032	4.6533
-----------	-------------------------------	-------------------------------	-------------------------------

Do you want to repeat the simulation? 1 -- Yes; 0 – No

Fig. 2 Output of the C# code

International Journal of Applied Science and Technology Vol. 3 No. 6; August 2013

75

3.2 Analysis of Results

For data set 50 both the bubble sort based binary search and insertion sort based binary search take less time than
does the quick sort based binary search. The same observation is true for data sets 100 and 200. And except for
the data set 100 insertion sort performs better than bubble sort! This implies that except for small data sets 200
and below, bubble sort is not efficient. Quick sort on the other hand is not impressive when used on small data
sets (500 and below), it is very efficient for large data sets.

These results tally with the asymptotic results where bubble sort has order N complexity, the insertion sort also
has order N complexity and quick sort has order NlogN complexity. The noticed superiority of insertion sort
noted here is not visible in the asymptotic results. This should not be surprising since asymptotic approach is
analytical. Furthermore the definition of big Oh disregards the effect of constants. Hence O(N/2) and O(N/4) are
both regarded as O(N) (Richard and Marcus, 2004).

For data sets 100,000, 200,000, 300,000 and 400,000, the quick sort method out performs both the insertion sort
and bubble sort. We can deduce that for small data sets either bubble sort or insertion sort can be used as a basis
for sorting before applying binary search technique. However for large data sets quick sort should be used as the
basis.

We also observe from the output that binary search method on its own takes very little time to search once the
items are sorted. However, linear search outperforms the binary search if sorting time required in binary search is
taken into consideration (Glenn J., 2007).

4. Conclusion

In this study, the subsisting assertion that quick sort is superior to both the bubble sort and insertion sort in
general, has been corroborated. We also note that insertion sort is more efficient than bubble sort. It is also
observed that linear search may be preferred if the data items to be searched have not been sorted. The efficiency
implicit in the binary search assumes that the items to be searched have been sorted but this may not be true in all
cases. Finally, if there is need to sort data before being searched, then it is recommended that both bubble sort and
insertion sort methods can be used for small data sets while quick sort should be used otherwise.

C# is used for coding in this study, it is therefore recommended that other programming languages should also be
used in order to carry out a comparative analysis of the study.

References

Ellis Horowitz and Sartaj Sahni (1978) Fundamentals of Computer Algorithms; Computer Science Press, Inc.
U.S.A.

Firebaugh (1987): Artificial Intelligence; A knowledge – Based Approach.
Francis Scheid (1983): Theory and Problems of Computers and Programming, Schaum’s Outline Series
Glenn J. (2007): Computer Science; an Overview Tenth Edition, Pears on Education, New Jersey, U.S.A.
Mark Allen Weiss (2007): Data Structures and Algorithm Analysis in Java; Pearson, Addison Wesley.
Richard J. and Marcus S. (2004): Algorithms; Pearson, Practice Hall.

