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Abstract 
 

Incorporating the one-seventh power law in the integral form of momentum equation in conjunction with the 
expression for the turbulent viscous shear stress, we establish relations for the turbulent boundary layer thickness 
as well as for viscous shear stress.  The analysis is based on a steady, turbulent, constant property, two 
dimensional boundary layer flow over a flat plate at zero angle of approach and zero pressure gradient.  We 
proceed to obtain a shape factor typical of the turbulent flow.  Comparison of the exact and approximate values 
of the boundary layer thickness and shape factor leads to the determination of the percentage error for each of 
these characteristics.  It is observed that as the boundary layer flow becomes more turbulent (i.e Re >> 5  105), 
where Re is the Reynolds number, these parameters decrease in value with consequent increase in the percentage 
error. 
 

Keywords: Turbulent, boundary layer, flow, smooth, flat plate, zero incidence, zero pressure gradient, two 
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1.0 Introduction  
 

A boundary layer is the layer of fluid in the immediate vicinity of a boundary surface where the effects of 
viscosity are significant.  The turbulent region of the boundary layer consists of three layers, viz: the laminar 
sublayer, the buffer layer and the turbulent layer. The laminar sublayer is a thin region next to the wall in which 
the flow is laminar.  It is separated from the turbulent layer by the buffer layer which is a region of transition from 
laminar to turbulent flow.  The buffer layer is so thin that it is always ignored in boundary layer analysis.  In both 
regions of the boundary layer, the velocity increases from zero at the plate and attains the free stream velocity U 
at the outer edge of the boundary layer.  The outer edge is usually taken as the point where u=0.99U (Prandtl, 
[9]), u is the velocity component in the x-direction. 
 

The subject, boundary layer, has been discussed extensively by many authors since the development of the 
concept by Prandtl [9].  For instance Craft and Lowell [3] applied steady state boundary layer theory to two 
aspects of oceanic hydrothermal heat flux and in their analysis they showed that, for near-axis model, heat transfer  
in the hydrothermal boundary layer is greater than the input from steady state generation of the oceanic crust by 
sea flow spreading. 
 

Afzal [1] used asymptotic arguments to analyse a turbulent boundary layer subjected to a strong adverse pressure 
gradient.  He found that there is an inertial sublayer where the streamwise velocity distribution obeys a half power 
law, whose slope depends on a non-dimensional parameter  xw p , where w  is the wall shear stress, xp  
is the pressure gradient and   is the boundary layer  thickness. 
 

Habib et al [5] carried out transient calculation of the boundary layer flow over spills using simulation and 
experimental approaches.  They validated their results against experimental data and also made comparison of the 
simulated results with empirical prediction models. 
 

Dorfman [4] presented a review of universal functions widely used in different areas of boundary layer theory for 
many years up to the present.  In his work he adopted various solutions from many published articles to show the 
breadth of universal approaches with application in laminar, turbulent and transition boundary layers in solving 
non-isothermal and conjugate heat transfer problems as well as in planetary boundary layer problems in 
meteorology.  
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Other researchers in the subject worth mentioning include Blasius [2], Kim and Changhoon [6], Mahmoudian and 
Scales [7], Pohlhausen [8], Schlichting [10], Vyas and Ranjan [11] 
 

In this work we employ a one-seventh power  law in integral momentum equation in conjunction with Blasius law 
of the shear stress to determine the approximate value of the turbulent boundary layer thickness.  The analysis 
leads to the determination of the percentage error by comparing our approximate value with the exact Blasius 
value of the boundary layer thickness.  The work is also analysed graphically. 
 

2.0 Boundary Layer Equations  
 

In the case of steady, two dimensional flow at zero incidence and zero pressure gradient the boundary layer 
equations due to Blasius [ 2 ] are: 
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Where u, v are the velocity components in the x,y directions respectively, while U is the free stream velocity. 
 

2.1 Blasius Typical  Values for Some Turbulent Characteristics 
 

These include: 
 (i) Blasius law (or relation) for viscous shear stress near the plate (see Blasius  

[ 2 ] ) is given by  
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In terms of local skin friction coefficient fC , (2.4) can be expressed as  
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Where Blasius  Blasius law of wall shear stress, 

  kinematic viscosity, while  and  are the dynamic 

viscosity and fluid density respectively. 
 

 (iii) Boundary Layer Thickness  
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 (iv) Shape Factor H*  
 

        7.24.13.1* H  
 

2.2 Derivation of Integral Momentum Equation from (1), (2) and (3). 
 

From the continuity equation (2.1) we find 
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Integrating this wrt y we get 
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Substituting (2.9) into (2.2) we have  
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Integrating (2.10) over y from y=0 to , gives 
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Integrating the second term of (2.11) by parts we find  
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Substituting (2.12) into (2.11) yields  
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Carrying out the required integration in (2.13) leads (after evaluation) to  
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

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 and noting that the integration is carried out with respect to y, we take the differentiation with 

respect to x outside the integral to get 
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Since the flow is parallel to x-axis, and 0
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Equation (2.15) is the integral momentum equation for a steady, planar, two-dimensional boundary layer-type 
flow with zero pressure gradient, where 0  = local shear stress.  
 

3.0 Application of Velocity Distribution in Karman Pohlhausen Equation  
 

The velocity profile typical of turbulent boundary layer flow follows a one-seventh power law of the form  
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for Reynolds number Re satisfying 75 10Re105  .   
Substituting (3.1) and (2.4) into (2.15) we find  
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Integrating the lhs of (3.4) and equating with the rhs, we find 
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Simplification of (3.5) yields 
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Integrating (3.7) and noting that the boundary layer is turbulent over the entire plate so that at x=0, the boundary 
layer thickness 0 , we obtain after simplification  
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Another way of representing (3.12) is  
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Equation (3.9) or (3.10) is the approximate turbulent boundary layer thickness. 
 

3.1 Other Approximate Turbulent Characteristics Displacement Thickness 1 
 

From Karman-Pohlhausen  [ 8 ], 
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Substituting (3.1) into (3.12) we find, after integration and simplification  
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Applying (3.10) in (3.13) yields 
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Again, from K. Pohlhanan  [ 8 ] , 
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Substituting (3.1) in (3.15) we have  
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Which on integration and simplification gives  
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Using (3.10) in (3.16) leads to  

  
 

)17.3(
Re
03606.0

5
1

2

xx



 

 

Shape Factor H  
Applying (3.14) and (3.17) we find 
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Wall Shear Stress approx . 
Substituting the value of   from (3.10) into (2.4) we find 
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Skin Friction Coefficient Cf 
 

By definition ( Schlichting, [10] ) 
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Substituting (3.20) in(3.21), we find after simplification  
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Comparison of the approximate value (3.10) with the exact value (2.6) shows that the error in the boundary layer 
thickness is about 2.6%. Similarly, the error in the shape factor, by comparing the approximate value (3.18) with 
the exact value (2.7), is about 1.2 – 8.2%. These are adequate for the present purpose. 
 

4.0 Illustrative Example  
 

By considering selected values of Reynolds number typical of turbulent boundary layer flow, viz: 
6666 104,103,102,10Re xxx  and 6105x , and using these in (2.6), (3.10), (3.14), (3.17) and (3.22) 

the approximate values for these turbulent characteristics are determined and compared with the Blasius value of 
turbulent boundary layer thickness. The result is displayed in Table 1. 
 

Table 1: Reynolds Numbers and Blasius values with Approximate vaues of Characteristics 
 

Reynolds 
Number 

(Re) 
 

Blasius value Approximate Values  of Characteristics  

x
Blasius

 
x


 
x
1  

x
2  fC  

610  2104.2 x  2103.2 x  3109.2 x  3102.2 x  3106.3 x  
6102x  2100.2 x  2100.2 x  3105.2 x  3109.1 x  3101.3 x  
6103x  2109.1 x  2108.1 x  3103.2 x  3108.1 x  3109.2 x  
6104x  2108.1 x  2107.1 x  3102.2 x  3107.1 x  3107.2 x  
6105x  2107.1 x  2107.1 x  3101.2 x  3106.1 x  3106.2 x  

 

From Table 1, the graphs of the approximate characteristics and that of the exact Blasius boundary layer thickness 
versus Reynolds number are displayed in Figure 1.  
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Figure 1: Graph of Blasius and approximate value of characteristics vs. Reynolds number (Re) 
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Discussion and Conclusion  
 

This work uses a one-seventh power law in the momentum integral equation based on a turbulent boundary layer 
development along a smooth flat plate at zero incidence and zero pressure gradient, together with Blasius shear 
stress relation to determine the approximate value of the turbulent boundary layer thickness.  Comparison of the 
approximate value (3.10) with the exact value (2.6) shows that the error in the turbulent boundary layer thickness 
is 2.6%.  Similarly, the error in the shape factor, by comparing the approximate value (3.18) with the exact value 
(2.7), is about 1.2 – 8.2%.  These results are adequate for the present purpose.  In (3.10), we observe that as the 
boundary layer flow becomes more turbulent (i.e Re >> 5  105), the boundary layer thickness decrease with the 
consequent decrease in the percentage error.  On the other hand, if the boundary layer thickness is expressed as in 
(3.11), we notice that Re  is large when  xRe   is large and vice versa.  
 

It is observe from Figure 1 that within the turbulent layer, the curves of the Blasius boundary layer thickness and 
that of the approximate boundary layer thickness get close to each other, coinciding with each other at the point 
Re = 5  106, whereas the curves of the displacement thickness, momentum thickness and skin friction coefficient 
get far away from that of Blasius boundary layer thickness.  
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