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Abstract 
 

This paper presents and compares the partial least squares (PLS) regression as an alternative procedure for 
handling multicollinearity problem with two commonly used regression methods, which are ridge regression (RR) 
and principle component regression (PCR) .The performances of RR, PCR and PLS are compared to help and 
give future researchers a comprehensive view about the best procedure to handle multicollinearity problem.  A 
Monte Carlo simulation study was used to evaluate the effectiveness of these three procedures. For comparison 
purposes, mean squared errors (MSE) were calculated the analysis including all simulations and calculations 
were done using statistical package S-Plus 2000 software.  The results of this paper show that, the performances 
of RR are most efficient when the number of regressors is small, while the PLS is most efficient than others when 
the number of regressors is moderate and high. 
 

Keywards: Multicollinearity; Ridge Regression; Principal Component Regression; Partial Least Squares 
Regression . 
 

1. Introduction: 
 

In the applications of regression analysis, multicollinearity is a problem that always occur when two or more 
predictor variables are correlated with each other.  This problem makes the estimated regression coefficients by 
least squares method to be conditional upon the correlated predictor variables in the model.  Multicollinearity is a 
condition in a set of regression data that have two or more regressors which are redundant and have the same 
information.  Redundant information means, what one variable explains about Y  is exactly what the other 
variable explains.  In this case, the two or more redundant predictor variables would be completely unreliable 
since the j  would measure the same effect of  those ix and the same goes for the other  .  Furthermore, 

1)'( XX  would not exist because the denominator, )( 2r - 1  is zero.  As a result, the estimates of   cannot 
be found since the elements of the inverse matrix and coefficients become quite large. 
 

The presence of multicollinearity in Least squares regression can cause larger variances of parameter estimates 
which means that the estimates of the parameters tend to be less precise.  As a result, the model will have 
insignificant test and wide confidence interval.  Therefore, the more the multicollinearity, the less interpretable are 
the parameters. In addition, the problem of multicollinearity in regression analysis can have effects on least 
squares estimated regression coefficients, computational accuracy, estimated standard deviation of least squares 
estimated regression coefficients, t-test, extra sum of squares, fitted values and predictions, and coefficients of 
partial determination. 
 

There are a variety of methods that have been developed for detecting the presence of serious multicollinearity.  
One of the most commonly used method is the variance inflation factor that measures how much the variances of 
the estimated regression coefficients are inflated compared to when the independent variables are not linearly 
related. 
 

The paper is organized as follows.  Section (2) presents the three methods for handling multicollinearity.  In 
section (3), we carry out the experimental study that compares the efficiency of considered methods.  Section (4) 
concludes. 
 

2. Methods of Multicollinearity: 
 

Various estimation methods have been developed to overcome the multicollinearity problem, such as ridge 
regression (RR), principal component regression (PCR) and partial least squares regression (PLS).   



© Center for Promoting Ideas, USA                                                        ___                                   www.ijastnet.com 

164 

 

In this section, RR and PCR are briefly outlined, while PLS is presented in more details.  First of all, the vector of 
coefficients in the linear regression is given.  The regression model used for these methods is defined by the 
following equation:  
 

o      y I X      ,                 (1) 
 

where, y is a ( 1n ) vector of observations on the dependent variable, o  is an unknown constant, X is a ( 

pn   )matrix consisting of n observations on p variables,  is a (  )vector of unknown regression 
coefficients, and  is a ( 1n ) vector of errors identically and independently distributed with mean zero and 

variance 2 . If the variables included in the matrix X and the vector y are mean centered, equation (1) can be 
simplified as follows: 
 

       Xy         (2) 
 

When there is more than one dependent variable, the equation (2) can be written as: 
 

E XB  Y    ,       (3) 

where, Y is a ( qn ) matrix of observations on q dependent variables q2 y  ,....  ,y ,y  1 , E is a ( qn ) matrix 

of errors, whose rows are independently and identically distributed, and B is a ( q  p ) matrix of parameters to 

be estimated when the matrix X has a full rank of p, the ordinary least squares regression estimator OLS̂  can be 

obtained by minimizing the sum of squared residuals, 
 

  )ˆ( ' )ˆ(  ˆ ' ˆ  X -y X -y                             (4) 
Hence,  

 YX' X ' X 1-
OLS )(  ˆ    ,      (5) 

where OLS̂  is a ( 1p    ) vector of estimated parameters. ols̂  provides unbiased estimates of the elements of 

, which have the minimum variance of any linear function of the observations.  When there are q dependent 
variables, the OLS estimator in equation (5) can be generalized as follows: 
 

YX' X ' XB 1-
OLS )(  ˆ   ,       (6) 

where OLSB̂  is the least square estimate of B.  When the independent variables are highly correlated, XX'  is 

ill-conditioned and the variance of the OLS estimator becomes barge. The problem of multicollinearity makes the 
estimated OLS coefficients be statistically insignificant (too large, too small and even have the wrong sign) even 
though the R-square may be high.  Therefore, a number of alternative estimation methods which settle into a 
category called biased estimation methods have been proposed and designed to handle multicollinearity.  If we 
quit insisting on unbiasedness, biased methods such as RR, PCR and PLS can be used to overcome 
multicollinearity.  
 

2.1. Ridge Regression: 
 

Ridge regression is developed by Hoerl and Kennard (1970). When multicollinearity exists, the matrix XX' , 

where X consists of the original regressors, becomes nearly singular.  Since, var 1-XX' )( )ˆ( 2   , and the 

diagonal elements of  1-XX' )(  become quite large, so, the variance of ̂  is to be large.  This leads to an 
unstable estimate of  when  OLS is used.  In RR, a standardized X is used and a small constant  is added to the 
diagonal elements of XX' .  The addition of a small positive number  to the diagonal elements of XX'  

causes XX'  to be non-singular.  

1p   
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Thus,  

 YX' θI  XX' 1-
RR )(  ˆ   ,     (7) 

 

where I is the ( pp  ) identity matrix and XX'  is the correlation matrix of independent variables.  Values of 

theta lie in the range (0,1).  When 0     , OLSRR  ˆ  ˆ  . Obviously, a key aspect of ridge regression is 

determining what the best value of the constant that is added to the main diagonal of the matrix  should be 
to maximized efficiency.  There are many procedures in the literature for determining the best value.  The 

simplest way is to plot the values of each  ˆ
RR versus  .  The smallest value for which each ridge trace plot 

shows stability in the coefficient is adopted (Mayers, 1990). 
 

2.2. Principal Component Regression: 
 

PCR is one method to deal with the problem of ill-conditional matrices.  What has been done basically is to obtain 
the number of principal components (PCs) Providing the maximum variation of X which optimizes the efficiency 
of the model.  PCR is actually a linear regression method in which the response is regressed on the PCs.  Consider 
X as mean centered and scaled (Mean-Centering is achieved by subtracting the mean of the variable vector from 
all the columns of X.  Variable scaling is also used to remove differences in units between variables, which can be 
accomplished by dividing each element of the mean centered X by the root sum of squares of that variable) then :  
 

  p  ,... 2,  ,1  i   ,JJXX ii     ' i    ,     (8) 

where the s
i
, are the eigenvalues of the correlation matrix  and the s

iJ ,  are the unit-norm eigenvectors 

of XX'  .  The vector iJ  is used to re-express the sX ' in terms of PCZ's in the form: 

  ppi22i11ii x J  ...  x J  x J Z    ,    (9) 

These s
iZ ,  are orthogonal to each other and called the artificial variables. Assume that the first m PCs optimize 

the efficiency of the model.  Then,  
   α  ZY mm  ,      (10) 

where  y )(  m
1

mmm z z z   and m is the number of PCs retained in the model.  Using   estimates, it is 

easy to get back to the estimates of   as: 

  mmPCR α v  ˆ   ,      (11) 

where mv  is a matrix consisting of the first m unit-norm eigenvectors.  PCR gives a biased estimate of the 

parameters.  If all of the PC's , are used instead of using the first m PC's , then PCR̂  becomes identical to 

OLS̂  (Hwang and  Nettleton , 2000). 
 

2.3. Partial Least Squares  Regression : 
 

PLS is a reasonably alternative method developed by Helland (1990) as a method for constructing predictive 
models when the explanatory variables are many and highly collinear.  It may be used with any number of 
explanatory variables, even for more than the umber of observations.  Although PLS is heavily promoted, it is 
largely unknown to statisticians (Frank and Friedman (1993)). 
 

To regress the Y variables with the explanatory variables ,,..., pi xx  PLS attempts to find new factors that will 

play the same role as the sX ' .  These new factors often called latent variables or components.   

XX' 

XX' 
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Each component is a linear combination of pi x,...,x . There are some similarities with the PCR. In both 

methods, some attempts have been made to fined some factors that will be regressed with the Y variables.  The 
major difference is, while PCR uses only the variation of X to construct new factors, PLS uses both the variation 
of X and Y to construct new factors that will play the role of explanatory variables. 
 

The intension of PLS is to form components that capture most of the information in the X variables, that is useful 
for reducing the dimensionality of the regression problem by using fewer components than the number of X 
variables (Garthwaite, 1994). 
 

Now we are going to derive the PLS estimators of   and B  .  The matrix X has a bilinear decomposition in the 
following form: 

 


p

i

,
ii

,
pp

,
2

,
11 TP'PtptpPtX

1
2        ....,  t      (12) 

Here the it are linear combinations of X, which we will write as riX .  The 1 p  vectors ip  are often called 

Loadings.  Unlike the weights in PCR (i.e. the eigenvectors iJ ), the ir  are not orthogonal.  The it , however, 

like the principal components iZ , are orthogonal.  There are two popular algorithms for obtaining the PLS 
estimators.  One is called NIPALS and the other one, is called SIMPLS algorithm.  
 

In the first one, this orthogonality is imposed by computing the it as linear combination of residual matrices iE , 

in other words, as : 

X E  ,p t - X  E  , wE t  o
i

1j

,
jjii1-ii  


   ,    (13) 

where the iw  are orthogonal.  Then two sets of weight vectors iw  and ir , i = 1, 2, … , m.  In most algorithms 

for both multivariate and univariate  PLS, the first step is to derive either iw  or ir  , i = 1, 2, … , m, in order to be 

able to calculate the linear combination of the it . Then ip  are calculated by regressing X onto it .  When m 

factors are to be taken into consideration, the following  relationship can be obtained  : 
 

  mm R X  T          (14) 

  1
mmmm TT'TX'P  )(         (15) 

  1-
mmmm  wP'WR )(     ,     (16) 

 

where the first m dominant factors, which capture most of the variance in X, have maximum ability for the 
efficiency.  Equation (16) connects two sets of weight vectors by a linear transformation.  From equations (14) 
and (15), mm RP  '  equals mI , since such a transformation exists.  Also mm PR  '  equals mI  as follows: 
 

   )(   )(    ' m
1-

mmmm
1-

mmmmmm ITT'T T'TT'T X' R'PR   (17) 
 

After m dimensions have been extracted, the vector of fitted values from PLS can be represented by the first m 
PLS linear combinations mT .  Thus the following equation is obtained: 
 

  yT'TT'TY mmm
m
PLS

1-
m )(  ˆ       (18) 

Notice that this is the derivation only for the univariate case.  
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The multivariate case is identical to the univariate case except that the vector m
PLSŷ  should be replaced by the 

matrix ` m
PLSŷ  (Huber et al. 2005 ).  Substituting mXR for mT  and OLS̂  for Y results in: 

 

OLSm
1-

mmm
m
PLS XX'R'XRX'R'XRy ̂  ) (   ˆ     (19) 

 

Then it is clear that: 
 

  ˆ )(   ˆ 1- m
OLSmmmm

m
PLS XX' R'XRX' R'R      (20) 

 

Some what a simpler form for OLS̂  can be obtained by first substituting equation (14) into (15), which yields 

1
mmmm XRXR'XRXP  )'(' . Then using this result in equation (20) gives:  

 

 OLSmmmmOLSmm
m
PLS P'wP'wP'R  ˆ ) (  ˆ  ˆ 1-    (21) 

 

In the multivariate case,  m
PLSB̂  has a similar form.  The only difference is that m

PLS̂  is replaced by OLSB̂ , 

i.e. 

 OLSmmmm
m
PLS BP'wP'wB ˆ ) (   ˆ 1-   

 

3. Simulation Study: 
 

In this section, we will compare the efficiency of the above three methods, RR, PCR and PLS by performing a 
simulation study on simulated data sets.  We emphasis on the parameter estimation not on the predictive 
performance of the methods.  The experiments consider the following regression model : 
 

iijj
P

1j
oi ex β βy    


      (22) 

 

3.1 Comparing the performances : 
 

The efficiency of the considered methods is evaluated by means of the mean squared errors (MSE) of the 

estimated regression parameters ̂ , which are defined by :  
 

 
2)(

1
  ˆ  1   )ˆ(  



Lm

Lm
MSE   ,     (23) 

where )(ˆ L  denotes the parameter estimated in the L-th simulation.  The MSE indicates to what extent the slope 
and intercept are correctly estimated.  Therefore, the main objective in this study is to obtain an MSE value close 
to zero. 
 

3.2 Simulation Settings: 
 

The simulated data used in this study consist of 6 4, 2, P   and 25 predictors variables for 50 40, 30, 20, n   
and 60.  The goal is to develop a linear equation that relates all the predictor variables to a response variable.  For 
the purpose of comparing   the three methods for multicollinearity, the analysis was done using S-plus software. 
 

The data were constructed as follows: 
N(0,1)x1   

1p x 0,1Nx   )(  1  
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1) N(0,  x  ...  xY p1  ,     (24) 
 

where 6,4,2P  and 25 that represent low )2( p , medium )6,4( P  and high number of predictor 

variables )25( p .  For each simulation, 100m   data sets were generated. 
 

3.3 Simulation Results: 
 

To determine whether multicollinearity exists or not, variance inflation factor (VIF) for each predictor for all 
cases are computed. VIF is the measure of the speed with which variances and covariances increase and it is the 
most commonly used method for detecting multicollinearity problem. VIF is a measure of multicollinearity in a 
regression design matrix (that is, independent variables) in a scaled version of the multiple correlation coefficient 
between the independent variable, and the rest of the dependent variables.  The measure shows the number of 
times that the variances of the corresponding parameter estimate is increased due to multicollinearity as compared 
to as what it would be if there were no multicollinearity.  Therefore, this diagonostic is designed to indicate the 
strength of the linear dependencies and how much the variances of each regression coefficient is inflated.  The 
formula of VIF is: 

   
2
j

j
R-1
1VIF   )(   ,      (25) 

where 2
jR  is the multiple correlation coefficient and measures the coefficient of correlation between two 

variables with 1R1 j      . 
 

There is no formal cut off value to use with the VIF for determining the presence of multicollinearity but Neter et 
al. (1990) recommended looking at the largest VIF value.  A value greater than 10 is often used as an indication of 
potential multicollinearity problem.  The VIF values for each predictor for all given cases in this study are greater 
than 50.  This shows that all the regression coefficients p ,...,1  appear to be affected by collinearity.  The 

efficiency test of the considered methods is evaluated by means of the estimated regression parameters ̂ . These 
values indicates to what extent the slope and intercept are correctly estimated.  According to the value of MSE 
that is close to zero, the slope and intercept are correctly estimated.  The results of the simulations are listed in  
Tables 1-4. 

Table (1) : The efficiency tests for low-number of regressions data sets, 2P   
 

N 20 30 40 50 60 
RR 

PCR 
PLS 

4.52 
15.34 
15.28 

4.06 
8.68 
8.64 

2.25 
5.43 
5.40 

1.36 
4.55 
4.52 

0.75 
2.23 
2.22 

 

Table (2) : The efficiency tests for medium -number of regressions data sets, 4P   
 

N 20 30 40 50 60 
RR 

PCR 
PLS 

24.07 
25.15 
2.63 

13.47 
17.46 
1.39 

9.31 
13.12 
0.99 

6.27 
8.89 
0.49 

3.51 
4.86 
0.13 

 

Table (3) : The efficiency tests for medium -number of regressions data sets, 6P   
 

N 20 30 40 50 60 
RR 

PCR 
PLS 

53.36 
65.71 
5.36 

26.61 
28.91 
2.11 

21.92 
21.59 
0.68 

13.13 
13.69 
0.37 

6.37 
7.13 
0.13 
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Table (4): The efficiency tests for high -number of regressions data sets, 52P   
 

N 40 50 60 
RR 

PCR 
PLS 

13.14 
13.69 
0.37 

9.20 
10.32 
0.17 

6.37 
7.13 
0.13 

 

From the results of Table (1) where 2P   and the specified n observations, ridge regression performed best 
compared to the other two methods which gives 52.4MSE  for 20n and 75.0MSE  for 60n , 
followed by PLS regression with 28.15MSE  for 20n  and 22.2MSE  for 60n and PC 
regression with 43.15MSE  for 20n  and 23.2MSE  for 60n , respectively.  The ridge 
regression method is considered the best since it has the lowest MSE values for all specified n observations and 
the differences from the other two methods are quite big.  On the other hand, there is a slight difference in the 
MSE for PLS and PC regressions which are chosen at the results are consistent for each n specified cases.  The 
results also show that, for a low number of regressors as 2p , MSE decreases as the number of observations 
increases.  
 

From the results of Table (2), the PLS regression performed better than RR and PC regressions when 4p  for 
all the specified n observations.  The MSE values for PLS regression differ a lot from the other two methods, 
where 63.2MSE  for 20n  and 13.0MSE  for 60n , 15.25MSE for 20n  and 

86.4MSE for 60n  respectively.  The optimal number of components for PLS and PC regressions should 
be chosen at the smallest value of MSE.  These show that both methods performed well with optimal number of 
components in handling multicollinearity for 4p  regressors. 
 

The results of Table (3) show that, the PLS regression performed best followed by RR and PC methods when 
6p  for all specified n observations.  The MSE values for PLS are 5.36 for 20n  and 0.13 for 60n , 

while for RR, the MSE values for the same n  are 53.36 and 6.37, respectively, and for PC, the MSE values are 
65.71 and 7.13.  The results also show that MSE values decrease as n increases from 20 to 60.  This shows that, as 
the number of observations becomes higher, the MSE values become smaller compared to a small number 
observations.  The results are also consistent where PLS performed better than RR followed by PC regression for 
every specified number of observations.  
 

The results of Table (4) show that, the RR method performs best followed by PLS and PC respectively when the 
number of regressors is high, 25p .  RR gives MSE values 13.14, 9.20 and 6.37 for 40n , 50 and 60, 
respectively, followed by PLS which gives MSE values of 0.37, 0.17 and 0.13 , and PC which gives MSE values 
of 13.69, 10.32 and 7.13. 
 

4. Conclusions: 
 

In this paper, the number of dimensions is less than the number of observations.  The Numerical results show  
that, RR and PLS methods are generally effective in handling multicollinearity problem in the specified 
observations with 2,4,6p   (for Low and moderate number of regressors ) and 25 (for high number of 

regressors). The performances of RR are most efficient than others when 2p   , while PLS is most efficient 

when 4,6p   and 25. 
 

The results also show that, both PLS and RR performed better than PCR in all the cases.  However, the 
differences between the PCR performance from PLSR and RR are only slight.  These confirmed result that there 
is no one method that dominates the other, and that the difference between the methods is typically small when 
the number of observations is large. 
 

In all cases, it is obvious that, the superior method performed well when the number of observations, n are larger 
than the number of regressors.  It also shows that, the results are consistent for every specified number of 
observations , n that were included in the analysis.  Generally, RR is approximate effective and efficient for a 
small p, while PLS is efficient for a large number of regressors p. 
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