
International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

23

Implementation of Nested Dissection Method Using Block Elimination

Hashim Saber (*)1

Department of Mathematics
College of Science and Mathematics
University of North Georgia, USA

Charles Bryan
Department of Mathematics

The University of Montana, USA

Abstract

In this paper, we consider the problem of solving an 22 nn  sparse positive definite system bAU  , arising from
the use of finite difference methods to solve an elliptic boundary value problem on an nn  mesh where

12  kn where k is a positive integer. The large sparse linear system can be solved directly in an efficient way
using nested dissection method, originally proposed by Alan George. This paper demonstrates two algorithms for
finding orderings using a version of the nested dissection method which leads to block Gaussian elimination of
the matrix A. Implementation of these algorithms is pursued and the issue of storage and execution time tradeoffs
is discussed.

Keywords: Nested Dissection, Direct Method, Elliptic Boundary Value Problem.

1. Introduction

1.1 Problem formulation.

This paper presents a fast solver for non-homogeneous variable coefficient boundary value problem (BVP) in
which the elliptic operator is self-adjoint and linear:

(1a))1,0()1,0(in),(),(),(























 RyxB

y
uyxG

y
u

x
uyxF

x
u

(1b) on),(),(Ryxgyxu 

1.2 Discretization

The method we describe is applicable to a variety of geometries and discretization schemes (finite elements, finite
differences, etc.). In this paper, we restrict our attention to the model problem where a square domain is
discretized via a finite difference scheme on a regular nn square mesh. The resulting system of N(=n2)linear
equations takes the matrix form

b U A (2)

Where A is NN  matrix and the vector U consists of the unknown quantities),(~, jkihuU ji . The quantities

jiBh ,
2 together with the values of u on the boundary are the entries of b.

The main goal of this paper is a detailed study of the solution of problem (1) when a particular "nested dissection"
method is used to order the unknown variables. Nested dissection is a technique due to George [5] for
systematically partitioning the graph associated with a matrix using separators (A separator is a set of vertices,
the removal of which, together with their incident edges, disconnects an otherwise connected graph component).

1(*)This paper is dedicated to my advisor Professor Charles Bryan whom I am especiallygrateful for his patience and
encouragement at the time I needed them most. Dr. Bryan, you have set an example of excellence as a researcher, mentor,
and role model.

© Center for Promoting Ideas, USA www.ijastnet.com

24

When a separator is found, its vertices are segregated; the graph spanned by the remaining vertices has two or
more components. Separators for these components are then found and segregated.

The procedure continues forming smaller and smaller components until separators can no longer be found. Then
all vertices are numbered, beginning with the last identified ones and proceeding "backward". The matrix canthen
be permuted accordingly.

A brief survey of nested dissection methods is presented in this section. Section 2 presents a version of nested
dissection ordering and the structure of the matrix A in equation (2) if the unknowns are ordered accordingly. An
ordering algorithm for that version of nested dissection is explicitly given. Our approach in factoring the matrix A
and solving the system in equation (2) is given in section 3. Section 4 deals with the number of arithmetic
operations and storage requirements in implementation of the method described in section 3. In section 5, we give
some concluding remarks.

The concept of Georg’s nested dissection ordering first appeared in George [5]. He presented an ordering for the
nn grid in the plane that leads to a system of N linear equations in equation (2), where 2nN  . Many articles

followed which generalized the effectiveness of his idea, combined his method with other well-known methods,
applied it to three-dimensional problems, and introduced similar but more applicable ideas. A brief description of
some of the articles is given below.

For regular nn grids, George [5] introduced the nested dissection ordering and gave a precise recommendation

for the nn grids, with 12  kn (k is positive integer), which resulted in)(2
3

NO arithmetic operations and
 NNO log storage [compared with  3NO and  2NO for operation counts and storage, respectively, for the

usual row (band) numbering scheme] where 2nN  is the number of the unknowns. Also he proved that all

orderings of the mesh must yield an operation count of at least)(2
3

NO , if the standard factorization algorithm has
been used.

Birkhoff and George [1] generalized George nested dissection [which is typically concerned with a planar mesh
consisting of either triangles or quadrilaterals treated as finite elements of a plane] to any grid. Their analysis is
applied more generally to any linear system whose Kth equation refers to the Kth unknown; for example, a set of
difference equations. They considered nested dissection in terms of partial orderings of partitions of the
corresponding system’s graph into disconnected components. Also, they gave a new and more general definition
for the process of elimination by nested dissection in terms of a sequence of partitions of the graph of the matrix
to be factored. They provided some simple examples showing that the order of magnitude of the operation-count
is the same for all plane domains. Moreover, they gave (incomplete) arguments which indicate that nested
dissection is numerically stable.

Examining the original work of the nested dissection method, Duff, Erisman and Reid [2] considered the case
when n is not a power of 2. They introduced an extension which appears to remove any advantage of requiring n
to be a power of 2. Also, they considered the use of line-shaped dissection sets, instead of cross shaped sets and
found that they do have a slight disadvantage. They evaluated storage and operation counts for George’s ordering
of three dimensional grids of the side kn 2 and concluded that the iterative techniques are superior in this case.
Also, they compared nested dissection on a square grid with the minimum degree algorithm. And for the 9 point
finite element case they concluded that nested dissection shows a significant advantage over the minimum degree
algorithm.

George [6] described how the ordering of the nn grid problem can be implemented in an efficient manner for
the two orderings given in [4] and [5], and provided numerical experiments which show that the execution times
of these programs properly reflects the arithmetic operation counts. Also, he compared the performance of these
programs with respect to the execution time and storage. The two ordering schemes, nested dissection and one-
way nested dissection, were discussed.

George, Poole, and Voigt [10] studied the consequences of terminating the mesh subdivision before completion;
that is, at some stage one does not subdivide the quadrants further, but simple uses row by row, band-oriented
ordering for the nodes in each quadrant.

International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

25

This idea is related to the idea of sub-structuring in structural engineering applications [12]. Analysis of the
arithmetic and storage requirements for this technique is given and the ordering is shown to be competitive with
nested dissection with regard to arithmetic operations and superior to that ordering in storage requirements. Also,
it was shown that there is no practical advantage in carrying the dissection to completion. The analysis was
carried out for a square region and for a general region. The authors proposed that a general region may be
subdivided (or sub-structured) into a union of smaller regions, many of which will be squares if the subdivision is
chosen appropriately.

George [7] provided an automatic scheme for finding orderings analogous to the one way dissection ordering. The

storage requirements for these orderings appear to grow as 2
5

N , and such orderings are inferior to nested dissection
orderings, whose storage requirements only grow as)log(NNO  grid for the 2 nnnN  .These estimates are
asymptotic, and unless N is very large indeed, the one-way dissection ordering appears to require considerable
less storage than the nested dissection orderings. In exchange for lower storage requirements, this method
performs more arithmetic than the nested dissection, so the automatic determination of such one-way orderings
for irregular problems is important when storage is limited. Also, a heuristic algorithm is described for finding
one-way dissection orderings for sparse matrix problems, and some numerical experiments describing its
application to some finite element problems were provided.

George and Liu [9] provided an automatic algorithm for producing nested dissection orderings for irregularfinite
element problems. A heuristic algorithm is describe for finding a nested dissection ordering for an undirected
graph, along with an appropriate data structure and a storage allocation scheme for a linear equation solver to such
orderings. Numerical experiments are provided which indicate that their combinations of orderings and solution
schemes, is superior to standard band or envelope schemes as long as the problems are moderately large.

Finally, Lipton, Rose, and Tarjan [11] introduced a generalization of the nested dissection algorithm (automatic
nested dissection). In factoring A to LLT the algorithm executes in)log(AAO time and)(AO space, where A

is the number of non-zero entries in the matrix A, and produce an ordering for which A is)log(AAO and they
claimed all of these bounds optimal. This algorithm is described in George [8], “unfortunately, this algorithm is
fairly complicated, and apparently its implementation has not yet been developed. This algorithm is also restricted
to planar problems since it makes explicit use of planarity.” Their generalization was achieved without degrading
the time and space bound so that it applies to any system of equations defined on planar or almost-planar graphs.
The method uses the fact that planar graphs have good separators (as small as possible). They also showed that
Gaussian Elimination is efficient for any class of graphs which have good separators and, conversely, that graphs
without good separators (including “almost all” sparse graphs) are not amenable to sparse Gaussian Elimination.

2. Ordering Scheme and the Matrix Structure

The numbering procedure we use is a version of nested dissection which can be considered as a method for
systematically partitioning the graph associated with a matrix using separators.

Consider numbering the region 1kR of size 11   kk nn where 12  k
kn . We call such region a square region

of type k+1 (Figure 1). The separator we choose is a cross (called cross of type k), as shown in the figure, consists
of four arms indicated by 4 , IiAK

i  and a center node kC . The four arms of size kk nn  1or 1 will be referred
to as arms of type k. If the vertices of this cross are virtually removed from the graph, they leave it partitioned
into four components, namely, 4321 and ,, , kkkk RRRR . Each of these four components is a square region of type k kR
of size kk nn  where its separator which is a cross can be found and the procedure continue until each of the last
components is a simple single node 11 .

Numbering the region 1kR consists of assigning a number to each node),(ji yx , with x-coordinate ix and y-

coordinate jy , we simply refer to a node),(ji yx by),(ji and define  11 ,1 where:),(  kk njijiM to be the

set of numbers associated with the nodes),(ji yx in 1kR . First we define an array)(pa k with knp 1 as
follows:

© Center for Promoting Ideas, USA www.ijastnet.com

26

Given 1
1 1),(
  k

k nppa with 1)1(1 a , then:






















1
2)1(

1)(
)(

1

11

1
1

kk

kkkk
k

k
k

k

npn
npnnpna

nppa
pa

2.1 The numbering algorithm

We define the numbering  11 ,1 where:),(  kk njijiM of a square region 1kR of size 11   kk nn as follows:

Given the numbering  kk njijiM  ,1 where:),(mesh with 1),(1 jiM , and k
k nppa 1)(, (where

)(pa k is defined above). Then the numbering  11 ,1 where:),(  kk njijiM of the region 1kR can be
described in the following steps:

Step 1: Numbering the four square regions 4321 and ,, , kkkk RRRR :

kkkk njnijiMjiM  1,1);,(),(1

kkkkkkk njninnjinMjiM   1,2 ;),1(),(1
2

11

1
2

11 2 ,1 ;2)1,(),(  kkkkkkk njnninjniMjiM

1
2

111 ,2 ;3)1,1(),(  kkkkkkk njinnjninMjiM

Step 2: Numbering the four arm regions 4321 and ,, , kkkk AAAA :

kkk
k

k njninjajiM  
 1,1 ;4)(),(21

1

1
21

1 2,1 ;4)(),(


  kkkkk
k

k njnninnjajiM

1 ,1 ;24)(),(21
1  
 kkkk

k
k njninnjajiM

1 ,2 ;34)(),(1
21

1  


 kkkkk
k

k njninnnjajiM
2

11),(  kkkk nnnM

In Figure 2, we give the region numbering of two examples where in the first the region is 2R divided into 9 sub-
regions and the second is 3R which is divided into 49 sub-regions.

The zero-non-zero pattern of the matrices induced by numbering the regions in Figures 2-a andFigure 2-b are
shown in Figures 3 and 4, respectively. The areas in which the non- zero entries are confined are shaded with
cross hatching. This arrangement of the matrix has the important property that the fill-in caused by Gaussian
Elimination with diagonal pivoting is also confined to the cross hatched areas plus the shaded squares.

3. The LLT Factorization

If we number the nodes as described in section 2, the collection of equations can be written as the system:

bUAk 1

Where 1kA is an 11   kk NN symmetric, positive definite matrix with 1
2

1   kk nN . [1441  kkk nNN] .

We partition 1kA into 9 blocks by 9 blocks arising from the partition 1441  kkk nNN . The various blocks

may be named etc. ,,, ii
k
i HVA , as indicated in Figure 1 where the blank blocks are zero blocks. In this

partitioning, each k
iA is an kk NN  matrix and again can be partitioned into 9 blocks by blocks as in the

definition above. Each iC is kk nn  , and s is a 11 matrix or scalar. The matrix 1kA can be factored as 1kL
where T

kk
k LLA 11

1


  is an 11   kk NN lower triangular matrix with positive diagonal elements, and T
kL 1 is its

transpose.

International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

27

This is Cholesky’s factorization and the process of finding 1kL by an efficient algorithm using the structure of

1kA is the concern of this section. For kj 1 , we refer to factoring 1 jkA as level j factorization.

Upon examining the block structure of 1kA , we obtain the analogous block structure of 1kL (Figure 1). Note
that:

T
ii VK  , T

ii HJ  , T
ii WF  , T

ii ZG  , T
ii MN  41  i ,

T
ii XP  21  i , T

ii YQ  31  i ,

With this block structure and assuming we have completed the factorization process for levels j where
2,,1,  kkj we obtain:

iii VLW 1 41  i

iii HLZ 1 41  i

2211155 WWWWCEE TTT 

4433266 WWWWCEE TTT 

11
1

51 ZWEP T , 22
1

51 ZWEQ T , TREN 1
1

51


33
1

62 ZWEP T , 44
1

62 ZWEQ T , TREN 2
1

62


33114422377 PPPPZZZZCEE TTTTT 

 22111
1

73 QQQQWEQ TT  

3322114422488 QQQQQQZZZZCEE TTTTTT 

 22113
1

73 NQNQREN TTT  

 3322114
1

84 NQNQNQREN TTTT  

44332211 NMNMNMNMsr  ,

and iE is an kk nn  lower triangular matrix for 81  i .

Continuing with the Cholesky method, we solve the system bSLk 1 (forward solution), then SUL k
T 1

(backward solution) with SUb and , , partitioned in a manner consistent with 1kL ,

iii bLS 1 41  i

 22115
1

55 SWSWbES TT  

 44336
1

66 SWSWbES TT  

 625133117
1

77 SPSPSZSZbES TTTT  

 73625144228
1

88 SQSQSQSZSZbES TTTTT  

 8473625199
1 SMSMSMSMb
r

S  ; then

rSU /99   94888 UNSEU T  

 9383777 UNUQSEU T  

 928272666 UNUQUPSEU T  

 918171555 UNUQUPSEU T  

 8464444 UZUWSLU T  

 7363333 UZUWSLU T  

© Center for Promoting Ideas, USA www.ijastnet.com

28

 8252222 UZUWSLU T  

 7151111 UZUWSLU T  

Implementing our TLL –factorization requires three major steps.

Step (1)

Generating WZ-matrices, that is generating by 41 , and  iZW ii and

Step (2)

A multiplication step which involves multiplying 41 ; W and , ,  iZWWZZ i
T
ii

T
ii

T
i .

Step (3)

Using the result of step (2) to generate the TLL factorization; this is a straightforward step which involves TLL
factorization of a full matrix, multiplying two full matrices and adding/subtraction matrices.
Remark:
There are two different approaches of factoring the matrix A which we refer to Algorithm (I) and Algorithm (II).
In Algorithm (I), we retain all the WZ-matrices corresponding to level k through k+2-j and use them to generate
the WZ-matrices for the k+1-j level. While in Algorithm (II), we discard the generated WZ-matrices as soon as
we have used them to generate the other blocks of L corresponding to the current level. In this case, we need to
reproduce all necessary entries in the WZ-matrices for levels k through k+2-j and use them when calculating the
WZ-matrices of the k+1-j level.

4. Operation Count and Storage Requirements

Our measure of operations count consists of two parts, the number of multiplicative operations (multiplication and
division) required to factor A into TLL and that of solving bxLLT  . We regard the multiplicative operations as a
reasonable measure since the required numbers of additions and subtractions is about the same; moreover, the
factorization is typically the major portion of the computation. In the following, “operation” will mean
multiplicative operation. The measure of storage requirements is the number of non-zero off-diagonal and
diagonal entries of the matrix L which have to be stored in order to carry out the solution of equation (1) as
described in section 3.

Consider generating the TLL factorization of A in bAx  where A is an kk NN  matrix (this is the 2nd level

factorization according to the definition given in section 3 with 12  k
kn .We assume

2
1 k

k
nn). The block

structures of A and L were given in Figure 4. It is important to recall from section 3 that rather than saving the
entire factorization, we shall store only 41 , ,  iME ii , 21 ,  iX i , 31 ,  iYi (referred to as RF-blocks),
and discard most of the non-zero entries of L, namely 41 and  iHLVL iiii . We recomputed these as needed
during the forward-backward final solution or generate the next level’s factorization blocks if desired.

Now suppose we were to perform the k-j+1 level, kj 1 , factorization of (1) in such a way that we have
calculated and saved the RF-blocks corresponding to all previous levels),,1, levels(jkkk  ) ; then we
first need to generate the matrices 41 and  iHLVL iiii in order to generate iE and the other RF-blocks.

LetF (n) = Number of operations to factor the 22 nn  matrix A with nnk  .

4.1 Calculating F (n):

The following table indicates the types of operations, number of times they occurred, and their operations count.
These results were derived from the factorization equations given in the beginning of section 3.

From the table below, we derive the following recursive equation for Algorithm (II):

 nnOnnnnFnF 2
26log3 log

16
99

252
1358

336
3341

2
4)(2 






 ,

International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

29

and with 1)1(F , the solution of this recurrence relation is

 nnOnnnnnnF 22
226log3 loglog

16
99

504
3173

84
1358

504
3341)(2 

As a result, we have the following theorem

Theorem:

The number of operations to factor an 22 nn  matrix A using the method explained in sections 2 & 3 is given by

 nnOnnnnnnF 22
226log3 loglog

16
99

504
3173

84
1358

504
3341)(2 

4.2 Storage requirements

Let)(n be the storage requirement to store the necessary entries in an 22 nn  matrix L. If we choose to store the
RF-matrices relative to all levels as explained in section 3, then we have the following recursive relation:

1)1(

1
2

6
2

7
2

4)(
2

























nnnn

© Center for Promoting Ideas, USA www.ijastnet.com

30

The solution of this recursive relation is

nnnnn
2
3

4
5log

4
7)(2

2
2  .

Theorem

The required number of non-zero entries in the lower triangular factor L of the matrix A factored as described in
section 3 is given by:

nnnnn
2
3

4
5log

4
7)(2

2
2 

4.3 Operations count to solve bULLT  :

Let)(nL be the number of operations to solve bLS  (forward solution given in section 3) where L is nn

lower triangular matrix, S and b are n-vectors. Let U(n)be the number of operations to solve SULT  (backward
solution given in Chapter 3) where TL is the transpose of L and U is n-vector. Let S(n) be the number of
operations to solve bULLT  . SoS(n) = L(n) + U(n).

Before stating the recurrence relation to generate S(n), we need to explain how we generate 8464 UZUW  and

11 SW T in the forward and backward formulas in section 3 and then find their required number of operations

where ji SU , are
22
nn

 matrices and W1 is an
22

2 nn









matrix as described in section 3.

As a result we have

111
4
7

2
4

2
4)(2 













 nnnUnLnL

Similarly we have

111
4
7

2
4

2
4)(2 













 nnnUnLnU

With
)()()(nUnLnS  , the recursive relation for S(n)is

International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

31

222
4
7

2
8)(2 






 nnnSnS

The solution to the recurrence relation is:

7
2

3
22

2
7

42
397)(23  nnnnS

Theorem:
The number of operations to solve bULLT  , where L is 22 nn  lower triangular matrix is given by

7
2

3
22

2
7

42
397)(23  nnnnS

4.4 Remark:

If we implement Algorithm (I) where we choose to store the WZ-matrices corresponding to all levels, then we
have the following results:

1. Operations count for TLL factorization.

  2
2

2
2

23 log
504
4535log

24
875

504
5039)(nnOnnnnnF 

2. Storage requirements.

nnnnnn 2
2

2
2 log

8
57log

4
31)(

3. Operations count to solve bULLT  .

)(
2
3log

42
7)(2

2
2 nOnnnnS 

5. Conclusion

We have described a version of the nested dissection method to approximate the solution of an elliptic boundary
value problem with variable coefficients (equation 1). The region is divided into nn  mesh where 12  kn .
We also designed an algorithm to implement the method by breaking the computations up into three steps: setting
up the problem which includes numbering the mesh and generating the input matrix, matrix factorization, and
forward-backward solution. We found that the choice of 12  kn (compared with 12  kn in George [4])
leads to techniques which can be defined recursively and hence systematically. This rewarded us with two main
advantages. The first is a well-structured partitioning of the matrix which allows us to proceed with block
elimination. The use of the partitioned matrix in the solution of (2) allowed us to design the efficient factorization
and solution procedures. The second advantage is that it allows us to designate the location of the non-zero entries
of L in advance. This is an important feature in designing an efficient way to store L.

Theoretical results in Section 5 are summarized in Table 1. As we see from these results, Algorithm II requires
more operations to perform than Algorithm I while Algorithm I requires more storage. In deciding which one to
use, we also need to know whether there is more than one right hand side involved to the matrix problem. Based
on these limitations and the results in Table 1, one can decide which algorithm to use.

© Center for Promoting Ideas, USA www.ijastnet.com

32

Table (1)

International Journal of Applied Science and Technology Vol. 4 No. 1; January 2014

33

Figure 4 Figure 3

© Center for Promoting Ideas, USA www.ijastnet.com

34

References

Birkhoff, G. and George, Alan. (1973) “Elimination by Nested Dissection”. InTraub (1973).
Duff, I.S., Erisman, A.M. and Ried, J.K. (1976) “On George’s Nested Dissection Method”. SIAM

J.Num.Anal.,Vol.13, No.5, October 1976.
Duff, I.S., (1981) “Sparse Matrices and Their Uses”. Proc. IMA Numer. Anal. Cont., University of Reading

(U.K.), July 1980. Academic Press - London
George, A. (1972) “An Efficient Band-Oriented Scheme for Solving nn  Grid Problems”. Proc. 1972 Fall Joint

Computer Conference, AEIPS Press, Montrale, N.J., pp. 1317-1321.
George, A. (1973) “Nested Dissection of a Regular Finite Element Mesh”. SIAM J. Numer. Anal. 10, pp. 345-

363.
George, A. (1977) “Numerical Experiments Using Dissection Methods to Solve nn  Grid Problems”. SIAM J.

Number. Anal., Vol. 14, No. 2, April 1977
George, A. (1977) “Automatic One-Way Dissection. Algorithm for Irregular Finite Element Problems”. Proc. 7th

Biennial Conf., Univ. of Dundee (1977)
George, A. (1981) “Direct Solution of Sparse Positive Definite Systems: Some Basic Ideas and Open

problems”.In Duff (1981).
George, A. and Liu, J.W. (1978) “An Automatic Nested Dissection Algorithm for Irregular Finite Element

Problems”. SIAM J. Numer. Anal., Vol. 15, No. 5, August 1978
George, A., Poole, W.G. and Voigt, R.G. (1978) “Incomplete Nested Dissection for Solving nn  Grid

Problems”. SIAM J. Numer. Anal., Vol. 15, No. 4, August 1978
Lipton, R.J., Rose, D.J. and Tarjan, R.E. (1979) “Generalized Nested Dissection”. SIAM J. Numer. Anal. 16, pp.

346-358.
Noor, A.K., Kamal, H.A. and Fulton, R.E. (1978) “Substructuring Projections. J. Computers and Structures”.
Traub, J.F. (1973) “Complexity of Sequential and Parallel Numerical Algorithms”. Proc. Of Conf. in Pittsburgh

(Carnegie Mellon); Academic Press.

