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Abstract 
 

This paper shows that within the parametric admissible region of the Box and Jenkins ARMA(p,q) structures there 

is a sub-region where the classical identification procedure via ACF and PACF does not work properly. We 

define this sub-space the “Quasi White Noise region” and show how the bootstrap procedure can be used to 

improve the performance of the structural identification for series located in this particular region. A simulation 

study was carried out and a comparison between the traditional and the bootstrap procedures is presented. 
 

Keywords: Box and Jenkins, Bootstrap, Quasi White Noise Process 
 

1. Introduction 
 

The Box and Jenkins approach, proposed in 1970, [1], as a general procedure to develop time series models for 

forecasting and control, consists of three stages, namely: structural identification, model parameter estimation and 

goodness of fitting tests. The structural identification is carried out via joint use of the autocorrelation function 

(ACF for short) and the partial autocorrelation function (PACF for short). However, in this particular stage of the 

procedure, there is a chances of the one assumes that the time series in study has been generated by a white noise 

type of stochastic process, when in fact, this assumption is not true. In other words the straight forward 

application of the identification procedure leads one to admit the series as being a white noise, yet, the model 

parameters are located in a particular region of the parametric space with properties not defected by the classical 

procedure. We define a time series with this property as “Quasi White Noise” series (QWN) from now on. 
 

The bootstrap is a non-parametric computational intensive statistical procedure (CIS for short), proposed in 1979, 

[2] and [3], which allows the evaluation of the variability of any statistics based on information of a single 

sample. It is recommended for situations where the standard procedures are not available or are difficult to be 

obtained in analytical terms. This technique can be used in problems characterized by both; finite sample or big 

sample size, as they produce better results in the former and as good result as the usual asymptotic in the latter (*). 

In this paper we formally propose the use of bootstrap as an additional technique to be used in the model 

identification stage of Box and Jenkins ARIMA structures. The remainder of the paper is organized as follows. In 

section 2 we address the problems associated with the identification of time series showing the QWN property, 

while in section 3 we propose the use of bootstrap for QWN series. In section 4 we describe a simulation study 

carried out and the main conclusions of the proposed procedure are drawn. The paper is concluded with an 

appendix containing the results and plots from the simulation study. 
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2. Classical Identification of Arima Structures and the Qwn Series 
 

It is well known that the identification of the ARIMA structure of the process generating a given series is carried 

out via the joint use of the (1-)% confidence intervals for the ACF (k) and the PACF (kk) given by (see Box 

and Jenkins [1] for details: 
 

                I = [-z(1-/2). )ˆ(ˆ
kV   ; z(1-/2). )ˆ(ˆ

kV  ]    for k, and 

               II = [-z(1-/2). 
n

1
; z(1-/2). 

n

1  
]       for kk 

 

As described in Box and Jenkins the intervals above are used to test, respectively, the following hypothesis: H01: 

k = 0 and H02: kk = 0. Therefore, the joint use of both: the sample correlogram (graph k x k) and the sample 

partial correlogram (graph kk x k) and the application of the tests for every k = 1, 2, ... results in the 

identification of an ARIMA structure candidate to model the series under study. However, situations may occur 

whereby the sample ACF and PACF are different of zero; however their values are not big enough to reject the 

null hypothesis of either one or both tests. In this particular case, the straightforward use of the classical procedure 

would mislead us in accepting the series as being generated by a white noise process. In reality, we are facing 

models whose parameters are located in particular regions of the parametric space whose theoretical absolute 

values of k and kk are small. Models presenting this property are the object of this paper and are formally 

defined below. Let T = {1, 2, 3, .... , n} represent a finite set of natural numbers and I and II above the (1-)% 

confidence interval to test, respectively: k = 0 and kk = 0. We define the QWN process as: 
 

Def.: The QWN is as an ergotic stochastic process whose absolute values of k and kk, though different of zero, 

are located within intervals I and II respectively.  
 

The regions of the stationary parametric space of the following structures ARMA(p,q) , i.e.: AR(1), AR(2), 

MA(1), MA(2) and ARMA(1,1) where the QWN processes exist are marked below, in figures I to V through the 

sets Q and Q
2
 within each one of the admissible (stationary and invertible) regions. The corresponding proofs of 

the existence of such regions can be found in reference [4]. Then denoting c = f(,n) where f(.) is a non-negative 

function of the confidence level  and of the series size n, we have, for each structure: 
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ARMA(1,1)  

 

Figure V -  ARMA(1,1) : Q
2
 = {( 1 ,  1 ) 

2  
; ( 1 - c)

2

1 - (
2

1  - 2c 1 + 1)  1 + 1  - c < 0,  ( 1 +c)
2

1 -  (
2

1 + 

2c 1 + 1) 1 +  1  + c > 0 } 
 

 

3. Using the Bootstrap in Structural Identification 
 

As mentioned before the bootstrap can be very useful in helping the identification of ARMA(p,q) structures, [6] 

and [5]. Models with parameters within of the QWN region, in particular, can be better identified by the use of the 

bootstrap. In order to use this technique in the structural identification of process generating the series under study 

one must first calculate the bootstrap’s distributions of k̂ and kk̂ . The algorithm used to generate such 

distributions is as shown in the flowchart of figure VI. Once these distributions are obtained, one can use them to 

estimate probability intervals for the true unknown parameters. The bootstrap interval for the parameters ( k and 

kk ) used in this study is the “Bias Corrected Percentile Interval” as described in [3] and has the following 

expression,  [ ))]2((ˆ));2((ˆ
0

1

0

1

 zzFDCzzFDC  
, which is used for either one k and kk , 

depending on the bootstrap distribution considered. 
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Figure VI - Flowchart of Algorithm Used to Generate the Bootstrap Distributions of k̂  AND kk̂  
 

4. Study of Simulation and Conclusions 
 

We artificially generated time series corresponding to models within the five ARMA(p,q) structures considered in 

this study namely: AR(1), AR(2), MA(1), MA(2) and ARMA(1,1). The positions of the parameters’s and ’s 

within of the respective parametric spaces of each one of the five structures are shown in figures VII to XI. The 

number of models for each structure was: 14 AR(1); 12 AR(2); 14 MA(1); 19 MA(2) and 24 ARMA(1,1). The 

residual variance was fixed at 
2

a = 0.1 for all series and a Gaussian distribution with mean zero for the noise was 

assumed throughout [4]. In each experiment were worked 100 Monte Carlo replications and 1000 bootstrap 

replications.  
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In the evaluation of the procedure classical versus the bootstrap procedure was calculated the empirical power of 

the hypothesis tests concerning the ACF and PACF.  In the classical procedure the following null hypothesis were 

considered: 
 

H01: k = 0  and  H02: kk = 0 
 

and was checked whether intervals I and II include the zero value. Concerning the bootstrap procedure the null 

hypothesis were the following:  
 

H01:[ 
o

k

*
̂ , 

up

k

*
̂ ]   0  and  H02:[ 

o

kk

*
̂ , 

up

kk

*
̂ ]   

 

Where the superscripts * o  and *up denote the bounds upper and lower for the corresponding parameters, and, 

the above intervals are the BC percentile intervals defined previously.  
 

Was, also, used the Euclidean metric to evaluate the distance between the number of coverage of the true 

parameter by the classical intervals and the number of expected coverage for each simulated model [7]. As were 

considered the first 3 lags (k =1, 2, 3), then they compose jointly the number of coverage as a single point. 

Likewise the expected coverage jointly was also considered a single point and the “distance” between these two 

points was evaluated by the Euclidean metric. In a similar way, was also evaluated the “distance” between the 

single point corresponding to the joint coverage for the three first lags with the bootstrap intervals and a second 

single point corresponding to the joint expected coverage for the first three lags. Incidentally, this second single 

point, formed via expected coverage is the same for both: classical and bootstrap procedures. The graphs these 

distances and the locations of the parameters of models in the parameter space for each one of the ARMA(p, q) 

structures simulated are shown in the figures VII to XXI of appendix I. The estimated standard errors of k and kk 

for the first three lags are as shown in appendix II. From the results of the simulation study we can draw the 

following conclusions: 
 

(I) The BC percentile interval has a greater power of rejecting the null hypothesis of zero values for the ACF and 

PACF (when they are false), especially when the models have their parameters within the QWN region. For 

models with parameters near to the boundaries of the stationary and invertibility regions, this power decreases, 

particularly for the PACF. This can be easily seen in the corresponding plots of the Euclidean distances in 

appendix I, where the distances of the bootstrap points to the corresponding expected ones are, in general, 

smaller than the classical distances. 

(II) The bootstrap estimates of k̂ and kk̂ are better for models located in the QWN regions (or near them), as 

can be seen by the estimates of these quantities shown in tables 1 to 5 of appendix II.  

(III) For time series generated by real white noise process, the performance of the bootstrap method is superior to 

the classical procedure and is according to the estimation of the standard error, as shown in table 6 of the 

appendix II. 
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Appendix I 
 

Location of model’s parameters in the parameter space and Euclidean distance between the bootstrap (B) and the 

expected value and between the classical (C) and the expected value for structure’s models. 
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Figure XIII - Location of Model’s Parameters in the Parameter Space for the AR (2) Structure 
 

 

 

 

 

MODEL 

 EUCLIDEN DISTANCE 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0.00 

0.25 

0.50 

0.75 

C 
C 

C 
C C 

C 
C 

C 
C 

C 
C 

C 

C 
C 

B 
B 

B 
B B 

B 
B 

B 
B 

B 
B 

B 
B B 

 
Figure XI – Euclidean Distance between the Bootstrap (B) and the Expected Value and 

between the Classical (C) and the Expected Value for Models of the MA(1) Structure for ACF 

 
  EUCLIDEAN DISTANCE 

MODEL 

1.25 

1.00 

0.75 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C 

C 

C C C 
C 

C 

C C 
C C 

C 

C 
C B 

B 
B B 

B B 
B 

B B 
B 

B 

B 

B 

          
Figure XII - Euclidean Distance between the Bootstrap (B) and the Expected Value and between 

the Classical (C) and the Expected Value for Models of the MA (1) Structure for PACF 

 
 ø 2

-c

-1

-.5

.35

-.20

.20

ø 1

Q
2

c

-2 -1 -c 0 c 1 2

0

1

-1 .5 -.5-.75 -.35 1.5.5 .75.35

• •

• •

•

• •

•

•

-.2 .2

• •

•

 
 Figure XIII - Location of model’s parameters in the parameter space for the 

AR(2) structure. 



International Journal of Applied Science and Technology                                                     Vol. 4, No. 4; July 2014 

92 

 

                                             

  

 

 

 

 

 

 

 

 

                            

 

 

Figure XIV- Euclidean Distance between the Bootstrap (B) and the Expected Value and between 

the Classical (C) and the Expected Value for Models of the AR (2) Structure for ACF 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XV - Euclidean Distance between the Bootstrap (B) and the Expected Value and Between the 

Classical (C) and the Expected Value for Models of the AR (2) Structure for PACF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure XVI - Location of Model’s Parameters in the Parameter Space for the MA (2) Structure 
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Figure XVI - Location of model’s parameters in the parameter space for the 

MA(2) structure. 
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Figure XVII: Euclidean Distance between the Bootstrap (B) and the Expected Value and between 

the Classical (C) and the Expected Value for Models of the MA(2) Structure for ACF 
 

             
 

 

 

Figure XVIII - Euclidean Distance between the Bootstrap (B) and the Expected Value and 
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0.5 

0.75 

1 

1.25 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MODEL 

EUCLIDIAN DISTANCE 

B 

B 
B 

B 
B 

B 
B 

B 
B 

B 
B 

B 
B 

B 

B 

B 
B 

B 

B 

C 

C 

C 
C C 

C 

C 
C 

C C 
C 

C C 

C C 

C 
A 

C 

C 

 
 

EUCLIDEAN DISTANCE 

MODEL 

C 

C 

C 
C 

C 

C C C C 

C 

C 

C 

C 

C C 

C C 

C B 

B 

B 

B 

B 

B B B B 

B 

B 
B B 

B 

B B 

B 

B 

B 

C

A 



International Journal of Applied Science and Technology                                                     Vol. 4, No. 4; July 2014 

94 

 

  Figure XIX - Location of Model’s Parameters in the Parameter Space for the ARMA (1,1) Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XX - Euclidean Distance between the Bootstrap (B) and the Expected Value and between 

the Classical (C) and the Expected value for Models of the ARMA (1, 1) Structure for ACF 
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Figure XXI – Euclidean Distance between the Bootstrap (B) and the Expected Value and between the 

Classical (C) and the Expected value for Models of the ARMA(1,1) Structure for PACF 
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Appendix II: Standard errors estimates of the classical and bootstrap procedures for k̂ and kk̂ , 

lags k = 1, 2, 3  
 

Tab. 1 – Models of the AR (1) Structure 

 

Model – n 

Parameters 
)ˆ( k )ˆ( ks  )ˆ( *

ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

AR(1) n=50 

1=0.125 

.136 

.140 

.135 

.141 

.145 

.148 

.135 

.133 

.131 

.136 

.134 

.139 

.141 

.141 

.141 

.135 

.137 

.138 

AR(1) n=50 

1=0.150 

.136 

.141 

.135 

.141 

.145 

.148 

.135 

.133 

.131 

.136 

.134 

.139 

.141 

.141 

.141 

.135 

.137 

.138 

AR(1) n=50 

1=0.200 

.135 

.142 

.135 

.141 

.147 

.150 

.136 

.133 

.130 

.135 

.134 

.139 

.141 

.141 

.141 

.136 

.139 

.139 

AR(1) n=50 

1=0.225 

.135 

.143 

.136 

.141 

.148 

.151 

.137 

.133 

.130 

.135 

.133 

.139 

.141 

.141 

.141 

.137 

.140 

.140 

AR(1) n=50 

1=0.250 

.134 

.144 

.137 

.141 

.149 

.152 

.137 

.133 

.130 

.134 

.133 

.139 

.141 

.141 

.141 

.137 

.141 

.141 

AR(1) n=50 

1=0.500 

.123 

.153 

.151 

.141 

.166 

.171 

.146 

.132 

.126 

.123 

.134 

.137 

.141 

.141 

.141 

.146 

.167 

.163 

AR(1) n=50 

1=0.750 

.102 

.151 

.172 

.141 

.193 

.211 

.153 

.136 

.125 

.102 

.135 

.136 

.141 

.141 

.141 

.153 

.255 

.239 

AR(1) n=50 

1=-.125 

.133 

.142 

.139 

.141 

.147 

.149 

.135 

.134 

.132 

.133 

.139 

.138 

.141 

.141 

.141 

.135 

.140 

.141 

AR(1) n=50 

1=-.150 

.133 

.143 

.140 

.141 

.148 

.150 

.135 

.134 

.132 

.133 

.140 

.138 

.141 

.141 

.141 

.135 

.141 

.142 

AR(1) n=50 

1=-.200 

.131 

.145 

.142 

.141 

.150 

.152 

.136 

.134 

.132 

.131 

.141 

.137 

.141 

.141 

.141 

.136 

.143 

.145 

AR(1) n=50 

1=-.225 

.130 

.146 

.143 

.141 

.151 

.154 

.136 

.134 

.132 

.130 

.142 

.136 

.141 

.141 

.141 

.136 

.145 

.146 

AR(1) n=50 

1=-.250 

.129 

.147 

.144 

.141 

.152 

.155 

.137 

.134 

.132 

.129 

.142 

.136 

.141 

.141 

.141 

.137 

.147 

.148 

AR(1) n=50 

1=-.500 

.115 

.159 

.162 

.141 

.172 

.179 

.146 

.134 

.131 

.115 

.147 

.131 

.141 

.141 

.141 

.146 

.182 

.181 

AR(1) n=50 

1=-.750 

.098 

.161 

.181 

.141 

.201 

.224 

.156 

.139 

.131 

.098 

.146 

.124 

.141 

.141 

.141 

.156 

.299 

.288 
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Tab. 2 – Models of the MA (1) Structure 
 

Model – n 

Parameters 
)ˆ( k )ˆ( ks  )ˆ( *

ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

MA(1)n=50  

1=0.125 

.132 

.142 

.139 

.141 

.146 

.149 

.135 

.134 

.132 

.132 

.139 

.138 

.141 

.141 

.141 

.135 

.140 

.141 

MA(1)n=50  

1=0.150 

.130 

.142 

.140 

.141 

.147 

.150 

.135 

.134 

.132 

.130 

.139 

.137 

.141 

.141 

.141 

.135 

.141 

.142 

MA(1)n=50  

1=0.200 

.127 

.144 

.142 

.141 

.149 

.152 

.136 

.134 

.132 

.127 

.140 

.136 

.141 

.141 

.141 

.136 

.143 

.145 

MA(1)n=50  

1=0.225 

.125 

.145 

.143 

.141 

.150 

.153 

.136 

.134 

.132 

.125 

.140 

.135 

.141 

.141 

.141 

.136 

.144 

.146 

MA(1)n=50  

1=0.250 

.124 

.146 

.144 

.141 

.151 

.154 

.137 

.134 

.132 

.124 

.140 

.135 

.141 

.141 

.141 

.137 

.146 

.148 

MA(1)n=50  

1=0.500 

.106 

.155 

.155 

.141 

.162 

.165 

.142 

.134 

.132 

.106 

.134 

.126 

.141 

.141 

.141 

.142 

.162 

.171 

MA(1)n=50  

1=0.750 

.097 

.162 

.161 

.141 

.170 

.173 

.146 

.134 

.132 

.097 

.124 

.113 

.141 

.141 

.141 

.146 

.174 

.194 

MA(1)n=50  

1=-.125 

.135 

.140 

.135 

.141 

.145 

.148 

.135 

.133 

.131 

.135 

.134 

.139 

.141 

.141 

.141 

.135 

.137 

.138 

MA(1)n=50  

1=-.150 

.134 

.140 

.135 

.141 

.145 

.148 

.135 

.133 

.131 

.134 

.134 

.139 

.141 

.141 

.141 

.135 

.137 

.138 

MA(1)n=50  

1=-.200 

.132 

.142 

.136 

.141 

.147 

.150 

.136 

.133 

.130 

.132 

.133 

.138 

.141 

.141 

.141 

.136 

.139 

.140 

MA(1)n=50  

1=-.225 

.130 

.142 

.136 

.141 

.147 

.151 

.137 

.133 

.130 

.130 

.132 

.137 

.141 

.141 

.141 

.137 

.140 

.141 

MA(1)n=50  

1=-.250 

.129 

.143 

.137 

.141 

.148 

.151 

.137 

.133 

.130 

.129 

.132 

.137 

.141 

.141 

.141 

.137 

.141 

.142 

MA(1)n=50  

1=-.500 

.114 

.152 

.144 

.141 

.159 

.162 

.144 

.132 

.128 

.114 

.124 

.126 

.141 

.141 

.141 

.144 

.153 

.161 

MA(1)n=50  

1=-.750 

.106 

.158 

.149 

.141 

.166 

.170 

.149 

.131 

.127 

.106 

.116 

.111 

.141 

.141 

.141 

.159 

.164 

.183 
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Tab. 3 – Models of the AR (2) Structure 
 

Model – n 

Parameters 
)ˆ( k )ˆ( ks  )ˆ( *

ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

AR(2)n=50  

1= 0.200 

2= -0.200 

.115 

.136 

.138 

.141 

.146 

.153 

.136 

.136 

.131 

.115 

.128 

.131 

.141 

.141 

.141 

.136 

.140 

.147 

AR(2)n=50  

1= 0.200 

2= 0.200 

.158 

.142 

.141 

.141 

.149 

.155 

.136 

.134 

.129 

.158 

.134 

.146 

.141 

.141 

.141 

.136 

.143 

.142 

AR(2)n=50  

1= -0.200 

2= -0.200 

.111 

.138 

.145 

.141 

.147 

.154 

.135 

.137 

.133 

.111 

.134 

.133 

.141 

.141 

.141 

.135 

.143 

.151 

AR(2)n=50  

1= -0.350 

2=  0.200 

.142 

.156 

.159 

.141 

.167 

.179 

.142 

.135 

.131 

.142 

.146 

.135 

.141 

.141 

.141 

.142 

.173 

.173 

AR(2)n=50  

1= -0.350 

2= -0.200 

.107 

.144 

.150 

.141 

.154 

.159 

.139 

.135 

.134 

.107 

.139 

.132 

.141 

.141 

.141 

.139 

.150 

.161 

AR(2)n=50  

1= 0.350 

2= 0.200 

.151 

.147 

.151 

.141 

.159 

.169 

.141 

.135 

.127 

.151 

.132 

.146 

.141 

.141 

.141 

.141 

.159 

.155 

AR(2)n=50  

1= 0.350 

2= 0.350 

.169 

.144 

.167 

.141 

.166 

.185 

.139 

.138 

.127 

.169 

.128 

.149 

.141 

.141 

.141 

.139 

.175 

.177 

AR(2)n=50  

1= -0.350 

2=  0.350 

.155 

.156 

.170 

.141 

.176 

.200 

.144 

.139 

.132 

.155 

.144 

.133 

.141 

.141 

.141 

.144 

.202 

.209 

AR(2)n=50  

1= -0.500 

2= -0.500 

.076 

.129 

.153 

.141 

.157 

.171 

.141 

.140 

.138 

.076 

.125 

.128 

.141 

.141 

.141 

.141 

.155 

.216 

AR(2)n=50  

1= -0.500 

2= -0.200 

.101 

.152 

.157 

.141 

.164 

.167 

.143 

.134 

.133 

.101 

.142 

.129 

.141 

.141 

.141 

.143 

.165 

.177 

AR(2)n=50  

1=  0.500 

2= -0.500 

.081 

.127 

.136 

.141 

.155 

.171 

.142 

.139 

.137 

.081 

.119 

.117 

.141 

.141 

.141 

.142 

.152 

.210 

AR(2)n=50  

1=  0.500 

2= -0.200 

.107 

.147 

.144 

.141 

.160 

.163 

.144 

.131 

.130 

.107 

.131 

.128 

.141 

.141 

.141 

.144 

.155 

.166 

 

 

 

 

 

 

 

 

 

 

 

 



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com  

99 

 

Tab. 4 – Models of the MA (2) Structure 
 

Model – n 

Parameters 
)ˆ( k )ˆ( ks  )ˆ( *

ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

MA(2)n=50  

1=   0.200 

2= -0.200 

.145 

.141 

.144 

.141 

.152 

.157 

.136 

.134 

.131 

.145 

.145 

.139 

.141 

.141 

.141 

.136 

.146 

.147 

MA(2)n=50  

1=   0.200 

2= -0.500 

.172 

.122 

.152 

.141 

.154 

.169 

.137 

.138 

.130 

.172 

.138 

.151 

.141 

.141 

.141 

.137 

.154 

.158 

MA(2)n=50  

1= -0.200 

2= -0.200 

.150 

.138 

.137 

.141 

.148 

.152 

.136 

.133 

.129 

.150 

.135 

.143 

.141 

.141 

.141 

.136 

.140 

.140 

MA(2)n=50  

1= 0.200 

2= 0.200 

.113 

.134 

.145 

.141 

.146 

.154 

.135 

.137 

.132 

.113 

.127 

.129 

.141 

.141 

.141 

.135 

.143 

.149 

MA(2)n=50  

1= -0.200 

2=  0.200 

.117 

.132 

.141 

.141 

.145 

.153 

.135 

.137 

.131 

.117 

.122 

.131 

.141 

.141 

.141 

.135 

.140 

.146 

MA(2)n=50  

1= -0.200 

2= -0.500 

.177 

.117 

.146 

.141 

.149 

.163 

.135 

.137 

.128 

.177 

.126 

.154 

.141 

.141 

.141 

.135 

.146 

.150 

MA(2)n=50  

1= 0.350 

2= 0.200 

.109 

.140 

.149 

.141 

.151 

.157 

.137 

.137 

.132 

.109 

.126 

.124 

.141 

.141 

.141 

.137 

.147 

.157 

MA(2)n=50  

1= 0.350 

2= 0.350 

.105 

.128 

.152 

.141 

.147 

.159 

.136 

.140 

.132 

.105 

.117 

.119 

.141 

.141 

.141 

.136 

.146 

.159 

MA(2)n=50  

1= -0.350 

2=  0.200 

.109 

.140 

.149 

.141 

.151 

.157 

.137 

.137 

.132 

.109 

.126 

.124 

.141 

.141 

.141 

.137 

.147 

.157 

MA(2)n=50  

1= -0.350 

2=  0.350 

.112 

.126 

.147 

.141 

.146 

.160 

.137 

.139 

.130 

.112 

.109 

.122 

.141 

.141 

.141 

.137 

.144 

.157 

MA(2)n=50  

1= -0.350 

2= -0.200 

.133 

.144 

.142 

.141 

.155 

159 

.141 

.132 

.128 

.133 

.140 

.138 

.141 

.141 

.141 

.141 

.149 

.148 

MA(2)n=50  

1=  0.350 

2= -0.200 

.126 

.148 

.152 

.141 

.161 

.165 

.140 

.134 

.132 

.126 

.152 

.135 

.141 

.141 

.141 

.140 

.159 

.160 

MA(2)n=50  

1=  0.500 

2= -0.200 

.108 

.155 

.160 

.141 

.169 

.173 

.145 

.134 

.132 

.108 

.151 

.132 

.141 

.141 

.141 

.145 

.174 

.178 

MA(2)n=50  

1=  0.500 

2= -0.500 

.120 

.143 

.170 

.141 

.174 

.185 

.146 

.137 

.130 

.120 

.178 

.127 

.141 

.141 

.141 

.146 

.190 

.186 
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Tab. 4 (cont.) – MA (2) 
 

MA(2)n=50  

1= -0.500 

2= -0.500 

.127 

.136 

.159 

.141 

.167 

.176 

.146 

.134 

.126 

.127 

.163 

.128 

.141 

.141 

.141 

.147 

.171 

.166 

MA(2)n=50  

1=  0.750 

2= -0.200 

.091 

.165 

.169 

.141 

.179 

.182 

.150 

.134 

.132 

.091 

.132 

.123 

.141 

.141 

.141 

.150 

.195 

.215 

MA(2)n=50  

1=  0.750 

2=  0.200 

.102 

.152 

.155 

.141 

.160 

.165 

.142 

.136 

.132 

.102 

.120 

.112 

.141 

.141 

.141 

.142 

.159 

.175 

MA(2)n=50  

1= -0.750 

2=  0.200 

.112 

.149 

.145 

.141 

.157 

.164 

.145 

.133 

.129 

.112 

.112 

     .133 

.141 

.141 

.141 

.145 

.152 

.169 

MA(2)n=50  

1= -0.750 

2= -0.200 

.096 

.160 

.156 

.141 

.174 

.177 

.153 

.130 

.126 

.096 

.126 

.121 

.141 

.141 

.141 

.153 

.179 

.197 
 

Tab. 5 - ARMA(1,1) 
 

Model–n-parameters 

 
)ˆ( k 

 

)ˆ( ks  )ˆ( *
ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

ARMA(1,1) n=50 

1=.200 

1=-.750 

.096 

.164 

.158 

.141 

.177 

.180 

.155 

.130 

.126 

.096 

.116 

.106 

.141 

.141 

.141 

.155 

.185 

.212 

ARMA(1,1) n=50 

1=.200 

1=-.250 

.119 

.151 

.144 

.141 

.159 

.162 

.143 

.131 

.128 

.119 

.131 

.133 

.141 

.141 

.141 

.143 

.153 

.156 

ARMA(1,1) n=50 

1=.200 

1= .250 

.134 

.140 

.137 

.141 

.145 

.148 

.134 

.134 

.132 

.134 

.137 

.138 

.141 

.141 

.141 

.134 

.137 

.138 

ARMA(1,1) n=50 

1=.200 

1=.500 

.117 

.146 

.146 

.141 

.152 

.156 

.137 

.135 

.132 

.117 

.135 

.131 

.141 

.141 

.141 

.137 

.147 

.152 

ARMA(1,1) n=50 

1=.200 

1= .750 

.106 

.153 

.154 

.141 

.160 

.163 

.141 

.135 

.132 

.106 

.126 

.118 

.141 

.141 

.141 

.141 

.158 

.170 

ARMA(1,1) n=50 

1= -.200 

1= -.250 

.135 

.139 

.135 

.141 

.144 

.147 

.134 

.134 

.131 

.135 

.135 

.139 

.141 

.141 

.141 

.134 

.136 

.137 

ARMA(1,1) n=50 

1= -.200 

1= -.250 

.112 

.155 

.155 

.141 

.163 

.167 

.142 

.134 

.132 

.112 

.142 

.131 

.141 

.141 

.141 

.142 

.163 

.168  

ARMA(1,1) n=50 

1= -.200 

1= .500 

.096 

.163 

.165 

.141 

.175 

.179 

.148 

.134 

.132 

.096 

.132 

.121 

.141 

.141 

.141 

.148 

.186 

.201 

    ARMA(1,1) n=50 

1= -.200  

1= .750 

.090 

.168 

.170 

.141 

.181 

.185 

.151 

.134 

.131 

.090 

.121 

.109 

.141 

.141 

.141 

.151 

.201 

.229 

ARMA(1,1) n=50 

1= -.200 

1= -.750 

.115 

.150 

.144 

.141 

.157 

.162 

.144 

.133 

.129 

.115 

.116 

.120 

.141 

.141 

.141 

.144 

.151 

.162 
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ARMA(1,1) n=50 

1= -.200 

1= -.500 

.123 

.143 

.138 

.141 

.149 

.153 

.138 

.133 

.130 

.123 

.126 

.133 

.141 

.141 

.141 

.138 

.142 

.146 

ARMA(1,1) n=50 

1=.500 

1= -.250 

.099 

.157 

.164 

.141 

.182 

.189 

.155 

.132 

.124 

.099 

.132 

.128 

.141 

.141 

.141 

.155 

.204 

.203 

ARMA(1,1) n=50 

1=.500 

1= .250 

.142 

.146 

.138 

.141 

.150 

.153 

.137 

.133 

.129 

.142 

.134 

.142 

.141 

.141 

.141 

.137 

.141 

.141 

ARMA(1,1) n=50 

1= -.500 

1= -.250 

.136 

.150 

.145 

.141 

.154 

.158 

.137 

.134 

.132 

.136 

.143 

.137 

.141 

.141 

.141 

.137 

.148 

.149 

ARMA(1,1) n=50 

1= -.500 

1= .250 

.094 

.164 

.175 

.141 

.188 

.198 

.153 

.135 

.130 

.094 

.141 

.126 

.141 

.141 

.141 

.153 

.227 

.231 

ARMA(1,1) n=50 

1= -.500 

1= .500 

.082 

.166 

.183 

.141 

.197 

.208 

.157 

.135 

.129 

.082 

.127 

.117 

.141 

.141 

.141 

.157 

.262 

.284 

ARMA(1,1) n=50 

1= .200 

1= -.500 

.103 

.159 

.153 

.141 

.171 

.174 

.151 

.130 

.126 

.103 

.124 

.120 

.141 

.141 

.141 

.151 

.172 

.185 

ARMA(1,1) n=50 

1= .500 

1= -.500 

.084 

.158 

.171 

.141 

.192 

.200 

.160 

.132 

.123 

.084 

.123 

.116 

.141 

.141 

.141 

.160 

.235 

.251 

ARMA(1,1) n=50 

1= -.500 

1= -.750 

.126 

.137 

.139 

.141 

.146 

.152 

.136 

.135 

.131 

.126 

.123 

.133 

.141 

.141 

.141 

.136 

.140 

.143 

ARMA(1,1) n=50 

1= .500 

1= .750 

.121 

.140 

.143 

.141 

.148 

.153 

.136 

.135 

.132 

.121 

.131 

.128 

.141 

.141 

.141 

.136 

.143 

.147 

ARMA(1,1) n=50 

1= .750 

1= -.250 

.078 

.145 

.177 

.141 

.206 

.227 

.158 

.136 

.124 

.078 

.131 

.128 

.141 

.141 

.141 

.158 

.322 

.313 

ARMA(1,1) n=50 

1= .750 

1= .250 

.136 

.158 

.162 

.141 

.173 

.185 

.146 

.134 

.127 

.136 

.132 

.143 

.141 

.141 

.141 

.146 

.186 

.178 

ARMA(1,1) n=50 

1= .750 

1= .500 

.153 

.154 

.146 

.141 

.151 

.156 

.137 

.133 

.129 

.153 

.136 

.145 

.141 

.141 

.141 

.137 

.145 

.143 

ARMA(1,1) n=50 

1= -.750 

1= -.250 

.128 

.169 

.171 

.141 

.181 

.198 

.148 

.136 

.132 

.128 

.171 

.129 

.141 

.198 

.141 

.148 

.132 

.208 
 

Tab. 6 – WHITE NOISE 
 

White Noise – n 

parameters 
)ˆ( k )ˆ( ks  )ˆ( *

ks  )ˆ( kk )ˆ( kks  )*ˆ( kks  

n=50 


2

a =.100 

.136 

.140 

.136 

.141 

.144 

.147 

.134 

.134 

.132 

.136 

.136 

.139 

.141 

.141 

.141 

.134 

.137 

.137 

 

 

   


