
International Journal of Applied Science and Technology                                           Vol. 4, No. 6; November 2014 

48 

 
Application of Discrimination and Classification on Diabetes Mellitus Data 

 
Michael Asamoah-Boaheng 

School of Graduate Studies, Research and Innovation 
Box KS 854, Kumasi Polytechnic 

Kumasi, Ghana 
Email: asboaheng@yahoo.com 

 
 
Abstract 
 

The assignment/allocation of individuals/observations to the various known groups with known mean vectors and 
distinguishing characteristics has been a major concern for years and several attempts have been made at 
deriving parsimonious rules that address this hurdle. In this study, Fishers Linear Discriminant Function 
(FLDF) was derived to provide maximum separation between Type 2 and Type1diabetes patients based on 
identified risk factors. The assumptions of FLDF were achieved by BoxMtest of equality of covariance 
matrices. A seven variate data on 620 diabetes patients obtained from Komfo Anokye Teaching Hospital 
(KATH) diabetes ward was obtained and used for data analyses . The derived FLDF was used to reclassify 
the original observation to obtain the discriminant scores from the functions and 85.3 percent correct 
classification was achieved. Also 84.8 percent of the cross validated grouped cases were correctly 
classified into either being a Type 2 or Type 1 diabetes patient group. Patients age as well as their BMI 
were identified to be the two major contributing variables in classifying a patient as a type1 or type 2 
diabetes. 
 

Keywords: Fisher Linear Discriminant Function, Diabetes Patients, Covariance Matrices, Cross 
Validation. 
 

1.0 Introduction 
 

Discriminant analysis is a multivariate approach for identifying the features that separate known groups or 
populations. In other words, discrimination is a multivariate technique concerned with separating distinct sets of 
observations and it is exploratory in nature. [4]. Discriminant analysis as a topic in Multivariate Statistical 
Analysis has attracted much research interest over the years, with the evaluation of Discriminant Functions when 
the covariances matrices are equal and unequal. This study is therefore aimed at using the classical method of 
discrimination in classifying diabetic patients as either type 1 or type 2 based on some identified anthropometric 
features and other factors.The problem of discrimination was first initiated by [2] in which equal covariance 
matrices were assumed with or without normality assumption. Fisher's approach to classification with two 
populations was based on arriving at a linear classification function that gave maximum separation between 
groups without assuming normality. Several investigations mainly with respect to multidimensional normal 
populations with common and unequal covariance matrices have been carried out by other authors. [6]considered 
the robustness of LDF under three specific distributions and the case of independent variables. These distributions 
were considered to be non-normal and were generated from the normal distributions using the Johnson system of 
transformations (i.e. log normal, inverse hyperbolic sine normal and logit normal distribution). They observed 
considerable decline in performance of the LDF (the log normal distribution used had extremely large skewness 
and kurtosis). Based on their results, Fisher's LDF was greatly affected by non-normality in the population. They 
concluded that, the use of Fisher's LDF under non-normality contamination situations could be badly misleading 
and recommended that the data be transformed to approximate normality prior to the use of the LDF. 
 

Departures from the assumptions of linear discriminant function analysis were explored by [5], where the effects 
of unequal covariances on the linear discriminant method werestudied. In spite of theoretical evidence supporting 
the use of the QDF when covariances are heterogeneous, its actual employment has been sporadic because there 
are unanswered questions regarding its performance in the practical situation where the discriminant function 
must be constructed using training samples that do not satisfy the classical assumption of the model. [8] 
investigated into the application of discrimination and classification on poultry feeds data.  
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They employed Fisher’s linear discriminant function for providing maximum separation between the two groups 
of eggs of which the chicken were fed with different combinations of feeds. However they proposed a linear 
discriminant function for the classification of eggs based on the size and cholesterol level. The function gave a 
good prediction based on the estimated values obtained from the Apparent Error Rates (APER) and Absolute 
Error Rate (AER). 
 

[7] applied discriminant analysis in differentiating between the signal patterns of healthy subjects and those of 
individuals with specific heart conditions based on diagnosis of ECG signals. An approach for classifying 
multivariate ECG signals based on discriminant and waveletanalyses was proposed. [3] studied the variable 
selection criterion for linear discriminant rule and its optimality in high dimensional and large sample data. They 
suggested that, a new variable selection procedure called Misclassification Error Criterion (MEC) for linear 
discriminant rule for high dimensional data set be set up. Their study found that the MEC not only asymptotically 
decomposes into 'fitting' and 'penalty' terms but also possesses an asymptotic optimality in the sense that MEC 
achieves the smallest possible conditional probability of misclassification in candidate variable sets. After the 
simulation studies, the study discovered that MEC has good performances in the sense of selecting the true 
variable sets. 
 

Predicting hospitalisation of patients with diabetes Mellitus; an application of the Bayesian discriminant analysis 
was studied by [1]. The main objectiveof his study was to develop and test a Bayesian discrimination model for 
the purpose of identifying both the personal and the healthcare system characteristics predictive of hospitalisation 
for the treatment of patients with diabetes Mellitus or commonly observed cormorbidities associated with the 
disease. The model was then tested by using a logit regression technique in order to estimate the probability of 
one or more hospitalisation events among patients with diabetes. Claims data extracted from the Hawaii Medical 
Service Association (HMSA) Private Business Claims (PBS) files for the 1995 calendar year was used. The 
model was able to correctly classify 90 percent of the observations. The study also found that multivariate 
discriminant analysis using a logit regression model successfully identifies important explanatory variables 
predictive of hospitalisation and as well as assigns patients into 1 of 2 mutually exclusive classes. 
 

2.0 Materials and Methodology 
 

2.1 Data Used 
 

A seven variate data set consisting of 620 diabetes patients either type 2 or type 1 diabetes were obtained from 
KATH, in Ghana and was used for data analysis. The seven measured variables included their Age, Weight (Wt), 
Height (Ht), Systolic Blood Pressure (BPS), Diastolic Blood Pressure (DPS), Fasten Blood Sugar (FBS) and Body 
Mass Index (BMI). 
 

2.2Discrimination and Classification of Two Populations 
 

Let )(1 xf and )(2 xf   denote the probability density function associated with a single vector random variable 

Xforthe populations 1 and 2 respectively.Considering an observed value T
pxxX ),...,( 1 ,we assign a vector 

X to either population 1 or 2 . Let  be the set ofcollection of all possible outcomes of X, hence, the partition 

of the sample space is given as 21URR where 1R is the subspace of outcomes which we classify as 

belonging to population 1 and 12 RR  the subspace of outcomes classified as belonging to 2 . Therefore 

the conditional probability of classifying an object as belonging to j when it really comes from i  becomes: 


jR

iij dxxfXRXPjiP )()|()|(     , ji ,  ji            (1) 

The conditional probabilities can also be obtained for ji  when 2,1, ji . 
 
Let )( ii XPP  , 2,1i  be the prior probability of i  where 121  PP . The overall probabilities of 
correctly and incorrectly classifying observations are: 
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P(object is correctly classified as i ) = iiii piiPXPXRXP )|()()|(   where 2,1i . P(object 

is misclassified as i ) = jjji piiPXPXRXP )|()()|(    where  ji  . 
 

2.3 Cost of Misclassification 
 

Let )|( jic denote the cost of classifying an object/observation into i  when actually belongs to j . Where the 
Expected Cost of Misclassification (ECM) is derived as: 
 

21 )2|1()2|1()1|2()1|2( pPcpPcECM                             (2) 
 

With 1p  and 2p being the prior probabilities for the two populations.  The two regions 1R  and 2R  below are used 
to minimized the expected cost of misclassification. 
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[4]. 
 
 

2.4 Classification with Two Multivariate Normal Populations when 21   
 

The density function of ),...,,( 21 pxxxX   for the two populations 1 and 2  is given by  

)()(
2
1exp

||)2(
1)( 1

2/12/ iipi xxxf 





   

If the population parameters 1 , 2 and  are known, then after cancellation the allocation rule after minimising 
the Expected Cost of Misclassification (ECM) becomes 
Allocate x to 1  if  
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[4]. 
 

2.5 Inferential Procedures in Discriminant Analysis 
 

Several inferential procedures exists in discriminant function analysis. The basic ones are discussed here.  
 

2.5.1 Test for 210 :  H  when 21   using Hoteling’s 2T -test 
 

We assume that two independent random samples 
111211 ,..., nyyy  and 

222221 ,..., nyyy are drawn from ),( 11 pN

and ),( 22 pN where 1  and 2 are known. In order to obtain a 2T test we assume that  21 . From the 

samples, we calculate 21 , yy , 111 )1( SnW   and 222 )1( SnW  .  
 
 

A pooled estimator of the covariance matrix is calculated as 
221

21





nn

WWS pl  for which )( plSE hence in 

testing the equality of the mean vectors we use the test statistics  

)()( 21
1
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nn

nnT pl 


      (6)       

Which is distributed as 2, 21
2  nnTp  when 0H is true. We reject 0H if 2

2,
2

21  nnTT  .  
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2.5.2 Wilks Likelihood Ratio Test 
 

If giyij ,...,2,1,  , nj ,...,2,1  are independently observed from ),( ipN  , then the likelihood ratio test 

statistics for gH   ...: 210 can be expressed as  
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The test statistics is distributed as the Wilk’s  -distribution. We reject 0H if 
EHp  ,,, . Hp , and E are 

the dimensions and degrees of freedom for hypothesis and error respectively. 
 

2.5.3 Box’s M-Test 
 

For a one way MANOVA with g groups )2( g the assumption of equality of covariance matrices can be stated 
as a hypothesis to be tested: gH  ...: 210 Versus 1H : at least two i ’s are unequal. Define 
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where 1 ii n , iii WS / is the unbiased sample covariance matrix and 
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2.6 Error Rate Estimation 
 

The performance of any classification procedure is based on the error rates or misclassification probabilities.  
 

2.6.1Cross Validation 
 

Let CV
Mn1  and CV

Mn2 denote the number of left out observations misclassified in group 1 and 2 respectively and it’s 

given by 
21

21

nn
nn

CV
CV

M
CV
M




       (10)        

 
 
3.0 Results and Discussion 
 

First and foremost, Box M test of equality of covariance matrix of the two groups (Type 1 and Type 2) diabetic 
patients were tested. Table 1 shows the test of homogeneity of the two covariance matrices for Type 1 and Type 2 
diabetic patients groups. From the table the log determinant values for the two groups as well as the pooled within 
groups were obtained. The three log determinant values as observed from Table 1 are almost the same indicating 
that the covariance matrices of the two diabetic patient groups are equal. The P-value of 0.350 which is greater 
than the significant level (α=0.05) indicates that the two covariance matrices are equal (i.e. 210 : H ) and 
hence the data do not differ significantly from multivariate normal distribution. 
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3.1 Test of Equality of the Two Mean Vectors 
 

Hotelling 2T  was then used to test for the equality of the mean vectors for Type 2 and Type 1 diabetic patients. 
The hypothesis tested for equality of the two mean vectors were: 
 

210 :  H  Vs.  210 :  H . And the mean vectors for Type 1 and type 2are 
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    respectively. 

 

From Table 2 of test for equality of the two mean vectors, the p-value=0.000 is less than significant level 
(α=0.05), hence we reject the null hypothesis ( 0H ) and conclude that the two mean vectors of the diabetes 
patient groups are not equal. 
 

Hence the pooled within group covariance matrix as well as the bivariate correlation coefficients are computed 
and shown in Table 3. As already indicated, the pooled within group covariance matrix satisfies one of the 
assumptions of Linear discriminant function and the bivariate correlation coefficients detects potential problems 
with multicollinearity. From the correlation table, it is clear that, none of the bivariate correlations between two of 
the measured variables were even closer to 0.80. This means that, multicollinearity was not observed among any 
two of the seven independent variables. 
 

Next was to derive the canonical discriminant function for providing maximum separation between types 1 and 2 
diabetic patients based on the identified seven independent variables. The eigenvalues table (i.e. Table 4) shows 
the eigenvalues of the discriminant function as well as the canonical correlation for the discriminant function. The 
larger the eigenvalue, the more amount of variance shared in the linear combination of variables. Since only one 
function is involved, the function then explains majority of variance in the relationship. An eigenvalue of 0.414 
and the percentage variance of 100 percent for the function indicates that, the derived discriminant function 
explains 100 percent variation in the relationship. This therefore reveals the importance of the discriminant 
function in the provision of maximum separation between the groups. Also since only one discriminant function 
was involved, the cumulative percentage of the variance was recorded as 100 percent. From the same table the 
Canonical correlation value was observed to be 0.541 and it explains an above average relationship between the 
discriminant scores and the levels of the dependent variable. 
 

Wilks lambda 
 

Wilks’ Lambda is the ratio of within-groups sums of squares to the total sums of squares. This is the proportion of 
the total variance in the discriminant scores not explained by differences among groups. A small lambda indicates 
that group means appear to differ. The Wilks lambda value of 0.707 from Table 5 indicates that not all of the 
independent variables contribute significance in the function. The table also provides a Chi-Square statistic to test 
the significance of Wilk's Lambda.  
 
As evident from the table, the Wilks lambda of 0.707, the chi-square statistics of 212.812 with p-value of 0.000 is 
less than the significant level (α) of 0.05 and hence, the derived discriminant function explains the group 
membership well, thus, the group means appear to differ. 
 

Table 6 summarises the output of the standardised canonical discriminant function coefficient and the structure 
matrix. The standardised canonical discriminant function coefficient was used to rank the importance of each of 
the seven independent variables. From Table 6, the standardised canonical discriminant function coefficient for 
the ageand BMI variables was observed to be 0.979 and 0.307 respectively.  
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This means that, the group separation depends mostly on the age and BMIof the patients. In other words a patient 
is being diagnosed as being type 1 or type 2 diabetic status based on their age and measured BMI. Other variables 
that the group separation depended on were the patient’s height, systolic Blood pressure and the diastolic blood 
pressure. From Table 6, the canonical structure matrix revealed the correlations between each variable in the 
model and the discriminant function. It is expected that, a variable with correlation of 0.3 or more is considered to 
be very important. Similarly the age of patients was observed to be a major determining factor in classifying a 
patient as either type 1 or type 2 since a strong correlation of 0.989 between the ages and the function was 
observed. Also a weak positive correlation between the BPS, Ht, DBP, Wt, BMI and the function was observed. 
 

The canonical discriminant function coefficients/ Fishers LinearDiscriminant Function obtained from the study 
was:  
 

BMIFBSBPDBPSHtWtAgeD 051.0025.0001.0004.0746.1024.0078.0176.712  (11) 
 

Hence based on the derived Fishers Discriminant Function, the classification rule for the two diabetes patient 
groups were obtained and was used to compute the discriminant scores for classifying the original observations 
into their respective groups. The classification rules obtained are: 
 

BMIFBSDBPBPSHtWtAgeD 18.3224.008.0384.0135139.1225.014.11281       (12) 
BMIFBSDBPBPSHtWtAgeD 29.3218.008.039.035.135545.1242.091.11412  (13) 

 

From Table 7, the computed discriminant scores for Type 1 ( 1D ) and Type 2 (D 2 ) diabetes groups were able to 
correctly classify 85.3 percent of the original observations into their respective groups. Also based on the error 
rates obtained by the cross-validation method as evident in Table 7, 84.8 percent of the cross validated grouped 
cases were correctly classified. The results shows a clear indication that, the derived FLDF as well as the 
classification rules provided maximum separation between the two main diabetes group patients (i.e. either a type 
1 or type 2 diabetic patient).  
 

4.0 Conclusion 
 

This study focused on deriving a discriminant function based on some identified variables in providing maximum 
separation between two groups of diabetes patients at Komfo Anokye teaching Hospital. Fishers Linear 
Discriminant Function based on the seven measured variables as well as the corresponding classification rule 
were developed. From the study 85.3 percent of the original observations were correctly classified whilst 84.8 
percent of cross-validated observation were correctly classified. Also the classification of the patients into their 
respective diagnosed diabetes status depended hugely on the patient’sage as well as their BMI and to some small 
extent their FBS. The derived linear discriminant function provided maximum separation and the classification 
rule obtained will be use to classify future diabetic patients with similar identified variables as whether the person 
will belong to a type 1 or type 2 diabetes status group. 
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6.0 Tables 
 

Table 1: Box’s M Test of Equality of Covariance Matrices 
 

 

Table 2: TestorEqualityofMeanVectors 
 

HotellingT2      P- value    Significantlevel(α) 
255.7643 0.000 0.05 
 

Table 3:Pooled within Group Matrices 
 

  Age Wt Ht BPS DBP FBS BMI 
 
 
 
 
Covariance 

Age 159.185 11.193 .056 4.026 -.220 -6.350 1.656 
Wt 11.193 238.951 .421 52.837 36.374 -4.579 75.701 
Ht .056 .421 .009 .014 -.100 -.008 -.162 
BPS 4.026 52.837 .014 518.792 164.189 12.026 17.114 
DBP -.220 36.374 -.100 164.189 1009.707 -.818 16.262 
FBS -6.350 -4.579 -.008 12.026 -.818 23.287 -1.350 
BMI 1.656 75.701 -.162 17.114 16.262 -1.350 36.499 

 
 
 
 
Correlation 

 
Age 

 
1.000 

 
.057 

 
.047 

 
.014 

 
-.001 

 
-.104 

 
.022 

Wt .057 1.000 .288 .150 .074 -.061 .811 
Ht .047 .288 1.000 .007 -.033 -.017 -.284 
BPS .014 .150 .007 1.000 .227 .109 .124 
DBP -.001 .074 -.033 .227 1.000 -.005 .085 
FBS -.104 -.061 -.017 .109 -.005 1.000 -.046 
BMI .022 .811 -.284 .124 .085 -.046 1.000 

 

Table 4: EigenValues 
 

Function(s) Eigenvalue % of Variance Cumulative % Canonical 
correlation 

1 0.414 100.0 100.0 0.541 

Log Determinants Test Results 
Groups Rank Log determinants Box’s M 199.5 
 (DM Types) 
Type 2 7 22.107 F Approx. 6.814 
Type 1 7 21.971 df1 28 
Pooled within  7 22.553 df2 35338.49 
groups P-value 0.35 
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Table 5: Wilk’s Lambda 

 

Test of Function(s) Wilks' Lambda Chi-square 
 

df P-value Significance 
level(α) 

1 .707 212.812 7 .000 0.05 
 

Table 6: Table ofStandardizedCanonical Discriminant FunctionCoefficients andStructure Matrix 
 

Standardise canonical discriminant function coefficient 
 

 
Structure Matrix 

Variables Function Variables Function 
Age .979 Age .986 
Weight -.364 FBS -.206 
Height .165 SBP .088 
SBP .102 Height .022 
DBP .004 DBP .021 
FBS -.121 Weight .012 
BMI .307 BMI .005 

 

Table 7: Classification Results 
 

  DM TYPES Predicted Group Membership Total 
  Type 1 Type 2 
Original Count Type 1 57 2 59 

Type 2 89 472 561 
% Type 1 96.6 3.4 100.0 

Type 2 15.9 84.1 100.0 
Cross-validated Count Type 1 57 2 59 

Type 2 92 469 561 
% Type 1 96.6 3.4 100.0 

Type 2 16.4 83.6 100.0 
 

DM=Diabetes Mellitus 
 


