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Abstract 
 

This study focuses the time series modeling of Saudi Arabian petroleum and its products importations by United 
States of America. This information which contains 505 observations of importations from Saudi Arabia by the 
United States of America on monthly basis from the first month of the year 1973 to the first month of 2015 and 
this information have been obtained from U.S. Energy Information Administration websites. Developing an 
appropriate model of time series for forecasting future value of this particular series happens to be the main 
objective of this study. The values up to December 2003 are taken for model building and observation from 
January 2004 to January 2015 is taken for model validation.  Exponential smoothing techniques and Box-Henkin 
ARIMA techniques are used for this purpose.  The accuracy of the fitted values is evaluated using model 
diagnostics methods and comparing the predicted values with observed values. 
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1. Introduction 
 

This statements focus on modeling of the Saudi Arabian petroleum and its products (Thousand Barrels per Day) 
importations by the United States of America on monthly basis from the first month of the year 1973 to the first 
month of 2015 and the sources of this information is U.S. Energy Information Administration. The modeling is 
mainly based on Exponential smoothing techniques and Box-Henkin ARIMA techniques. Developing an 
appropriate model of time series for forecasting future value of this time series happens to be the main objective 
of this study. The values up to December 2003 are taken for model building while the observation from January 
2004 to January 2015 is taken for model validation.   
 

Both additive and multiplicative models are considered for graphical analysis. The time series plot log 
transformed series reveals only seasonal variations and additive model is selected for further analysis.   Time 
series decomposition is adopted to identify the seasonal indices. The seasonal indices suggest that the 
importations of Saudi Arabian petroleum and its products by   United States of America are a little bit 
significantly seasonally affected. The import is maximum during January and minimum during March. Seasonal 
variations can be removed from the original data to obtain seasonally adjusted data (deseasonalized data) which is 
free from seasonal variations for further analysis. The seasonally adjusted series is analyzed using exponential 
smoothing techniques. The estimated value of alpha is 0.64198. The value of alpha telling us that more 
importance is given to recent observations than past forecasts. The analysis residuals suggest that the exponential 
model satisfy the model assumptions. Autoregressive Integrated Moving Average (ARIMA) models are tried after 
verifying the stationarity conditions using ADF test.  Two models selected for final selection are ARIMA (1,1,1) 
and ARIMA(1,1,0).  The principle of parsimony, AIC, BIC were employed to choose the best model. The values 
of AIC suggest that there is not much difference in these information criteria. Therefore, using the principle of 
parsimony, the ARIMA (1,1,0) is the best model. Diagnostic tests residual analysis was used to validate the model 
assumptions.  Final model was used to forecast the values of import between January 2004 and January 2015. 
Both of the observed values as well as the forecasted values are found to be close.  
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2. Preliminary Analysis  
 

An excellent review of the pattern of movement in the time series is recorded with the plotting of its graph. 
Plotting of time series graph is being employed for identifying dissimilar components of the time series, namely 
trend, seasonal variation and cyclical variations. The suitability of additive or multiplicative model is examined 
using time series plots. 

 
Figure 1: The time series plot of U S importation of Saudi Arabian Petroleum and its Products. 

 

The graphs shows clear seasonal, cyclic and trend effect in the US oil petroleum and its Products importations  
The additive components model, Y =T+S+I and the multiplicative model Y =T*S*I are the  two straightforward 
models relating the observed value Yt of a time series to be Trend (T), Seasonal (S) and Irregular (I) components 
are the additive components model. Y =T+S+I and the multiplicative model Y =T*S*I. When the time series 
being analyzed has approximately the equivalent unevenness all over the dimension of the series then the 
performance of the additive components model is at its best. In other words, each of the values of the series 
descends roughly inside a band of constant width concentrated on the trend.  The best performance of the 
multiplicative component model is attained when the variability of the time series increases with the level.  
 

A plot of log transformed series is useful for checking whether multiplication model is more appropriate.  

 
Figure 2: The time series plot of U S importations of Saudi Arabian Petroleum and its Products. (Multiplicative Model) 

 

There was no significant change in the pattern of movement of the series. The main variability in the series is the 
seasonal variation. The plot of log transformed series does not alter this variation. The additive model is seem to 
be more appropriate since there is an approximate constancy in the dimension of  the periodical variation 
synchronously and there is no observable time series degree dependency with the arbitrary variations additionally 
appeared steady approximately in measurement synchronously.  
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2.1 Decomposition of Time Series  
 

An effort to identify the component factors that might impact on U S Importations of Saudi Arabian Petroleum 
and its Products is one approach to the analyze the time series of the affected data. The process of identification is 
referred to as decomposition. This process involves separate identification of each component. The forecasts of 
the future value are obtained by combining the projections of each of the components. 
 

Combining together inclination part, periodical part and uneven part then makes up a seasonal time series. An 
additive model referred one type of model which consider the worth of time series to be the addition of all parts; 
whereas, a multiplicative model referred one type of model treating the time to be the multiplication of all parts. 
In time series decomposition, these components are estimated and removed from the original series to identify the 
random component. The technique of ratio to moving average is employed to obtain the periodical indicators of 
the specified time series using R function decompose ().The following table gives seasonal indices.  
 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
37.82 -36.90 -40.54 -16.63 10.81 -10.20 11.09 9.02 21.64 -6.72 7.84 12.77 

 

The seasonal indices suggest that there exists a little significant seasonal effect of Saudi Arabia crude oil and 
Petroleum Products importations on the US oil imports. The import is maximum during January and minimum 
during March. Seasonal variations can be removed from the original data to obtain seasonally adjusted data (de-
seasonalized data) which is free from seasonal variations for further analysis. The trend and an irregular 
component are now contained in the seasonally adjusted series. The plot of different component’s time series is 
given below. The graph shows no constant trend in the data but systematic seasonal variations are clear in the 
plot.  

 
Figure 3: plot of components showing U S importations of Saudi Arabia Petroleum and its Products. 

 

The plot given below gives the plot of de-seasonalized values of the series.  Further analysis is carried out on 
these deseasonalized values of the series.  The predicted values obtained from this series can be converted to the 
original values by adding the corresponding seasonal indices.  

 
 

Figure 4: Plot of de-seasonalized series showing U S importations of Saudi Arabina Petroleum and its Products. 
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3. Forecasts using Exponential Smoothing 
 

Short term forecasts for the time series can be made using exponential smoothing which is   more appropriate for 
a trend-free and seasonality-free additive model. There is suggestion in the preceding analysis that no constant 
trend exists in the deseasonalized time series.  
 

Considering the latest current understanding exponential smoothing continue to revises an estimate. An additional 
significance is being given to the latest current observations after consideration of many observations. A means by 
which the present period instant can be approximated is provided through simple exponential smoothing method. 
The parameter alpha is employed to control smoothing; for the current period instant approximation. 0 with 1 
represent two numbers between which the value of alpha can be derived. A near 0 values of alpha denotes that 
little weight is positioned on the more current observations during future values forecasting. Below is exponential 
smoothing detail. 
 

The exponential smoothing equation is 1
ˆ ˆ(1 )t t tY Y Y      

 

Holt-Winters exponential smoothing having no trend as well as seasonal component 
 

Call: 
 

Holt Winters(x = Yt_Sea_Adj, beta = FALSE, gamma = FALSE) 
Smoothing parameters: 
 alpha: 0.6419812 
 beta : FALSE 
 gamma: FALSE 
 

Coefficients: 
      [,1] 
a 809.6127 
 

Holt Winters () output gives expression such as projected worth of the alpha parameter is roughly 0.64198. The 
value of alpha telling us that more importance is given to recent observations than past forecasts.  The following 
graph gives the joint plot of predicted values and forecasts based on single exponential smoothing. Both series are 
close to each other indicating that single exponential smoothing method is accurate in predicting the time values.  
The difference between the observed and predicted value of the series is known as error while a degree of 
correctness of the forecasts is used to represent the sum of squared errors (SSE). 
 

Here this11470607 is the sum-of-squared-errors. 
 

The forecasted value of series for next 12 months can be obtained using forecast. Holt Winters () function. The 
forecasted values are given in the table. The forecasts are also included in a graph.  
forecast. Holt Winters (Yt_Exp_F,h=12) 
       

Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95 
Feb. 2015      809.6127 616.0932 1003.132 513.6502 1105.575 
Mar. 2015      809.6127 579.6468 1039.579 457.9101 1161.315 
Apr. 2015      809.6127 548.2339 1070.992 409.8683 1209.357 
May 2015      809.6127 520.2108 1099.015 367.0108 1252.215 
Jun. 2015       809.6127 494.6715 1124.554 327.9516 1291.274 
Jul. 2015        809.6127 471.0532 1148.172 291.8306 1327.395 
Aug. 2015      809.6127 448.9784 1170.247 258.0702 1361.155 
Sep. 2015       809.6127 428.1791 1191.046 226.2603 1392.965 
Oct. 2015       809.6127 408.4566 1210.769 196.0975 1423.128 
Nov. 2015      809.6127 389.6595 1229.566 167.3496 1451.876 
Dec. 2015      809.6127 371.6683 1247.557 139.8346 1479.391 
Jan. 2016       809.6127 354.3877 1264.838 113.4061 1505.819 
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Figure 5 : Plot of observed and fitted values of the series under exponential smoothing 

 
Figure 6: Plot of Forecasted series under exponential smoothing. 

 

The ACF function can be used as a diagnostic tool which will compute the correlogram (plot of autocorrelation 
values) of the forecast errors. The ACF of the residuals decline quickly to zero indicating that the residuals form a 
stationary series.  

 
Figure 7 :  Plot of Auto correlation function 

 

The plots of ACF suggest the residuals autocorrelation and assumption are not violated for a valid time series 
model. Box –Ljung test can be used a formal test for auto correlation among residuals.  
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In a formal test of Box-Ljung test 
 

Data:  Yt_Exp_F2$residuals 
 

X-squared = 16.8533, df = 20, p-value = 0.6625 
 

16.8533is the Ljung-Box test figure, whereas, 0.6535 is the p-value, therefore, the in-sample forecast inaccuracy 
on lags 1-20 contains little proof of non-zero autocorrelations. 
 

4. ARIMA Modeling and Forecasting  
 

A specific time series models aimed at the unequal part of the time series with non-zero auto correlations in the 
unequal part are included in the autoregressive integrated Moving Average (ARIMA) models. Stationary time 
series are being defined using models of ARIMA. Thus, it is necessary to initially ‘differentiate ‘the time series 
pending getting a motionless time series, when starting off with a non-motion provided that there is the variation 
in the time series d times for achieving a series that is motionless. 
 

Here seasonally adjusted time series is divided into two groups. The values up to December 2003 is taken as 
Model building Period and observation from January 2004 to January 2015 is taken for Model validation period. 
A formal test for stationary is achieved using the augmented Dickey-Fuller Test (ADF) test. ADF test for the 
original series suggest that the series is not motionless. But there is significant stationary test for the first 
difference gives indication as first differenced series is motionless. 

 

The Original Series  
 

Augmented Dickey-Fuller Test 
Data:  Yt_L 
Dickey-Fuller = -2.1797, Lag order = 7, p-value = 0.5012 
Alternative hypothesis: stationary 

 

Differenced series  
Augmented Dickey-Fuller Test 
Data:  Yt_L_d1 
Dickey-Fuller = -7.6617, Lag order = 7, p-value = 0.01 
Alternative hypothesis: stationary 

 

4.1 Model Identification   
 

The previous analysis indicated that the first difference of the series is stationary. Now we are applying graphical 
techniques to identify the other parameter (p,q) of the ARIMA model.  ACF and PACF plots are used for this 
purpose. There is evidence of decay on the ACF plot with ensuing oscillation which is typical of an AR(1) model. 
In the meantime, after lag 1 the value of auto correlogram becomes zero  while  the partial auto correlogram 
decreases to zero and  therefore a moving average model of order q=1.  

 
 

Figure 8 :  Auto correlogram  for the first difference 
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Figure 9 : Partial auto correlogram for the first difference 
 

We consider two models for the final selection ARIMA (1, 1, 1) and ARIMA (1,1,0). Principle of parsimony, 
AIC, BIC is used to choose the best model. The principle of parsimony is very important in the modeling time 
series. Representing the systematic structure with the minimum possible parameters is what the principle 
signifies. Basically,  this indicate that ,if both are adequate, minimal representations of a time series process are 
more desirable than more complex ones. 
THE ARIMA (1,1,1) 
 

Call: 
arima(x = Yt_L, order = c(1, 1, 1)) 
Coefficients: 
ar1      ma1 
0.0017  -0.3353 
s.e.  0.2381   0.2324 
 

The value 24053 is the approximation of sigma^2:  log likelihood = -2397.81,  AIC = 4801.62 
 

ARIMA (1,1,0) 
Call: 
arima(x = Yt_L, order = c(1, 1, 0)) 
Coefficients: 

  ar1 
   -0.3082 

s.e.   0.0495 
 

The value 24205 is the approximation of sigma^2:  log likelihood = -2398.98,  AIC = 4801.95 
 

The values of AIC suggest that there is not much difference in these information criteria. Therefore, using the 
principle of parsimony, the ARIMA(1,1,0) is the best model. The values of the number of barrels for the year 
2004 is given below.  

 

Point           Forecast    Lo 80           Hi 80            Lo 95       Hi 95 
Jan 2004      1482.264 1282.878649 1681.649  1177.330476 1787.197 
Feb 2004     1456.056 1213.607841 1698.505  1085.263319 1826.850 
Mar 2004    1464.133 1175.358051 1752.908  1022.489746 1905.777 
Apr 2004     1461.644 1135.754810 1787.533   963.239479 1960.049 
May 2004    1462.411 1102.462449 1822.360   911.917123 2012.905 
Jun 2004      1462.175 1071.338181 1853.011   864.441811 2059.908 
Jul 2004       1462.248 1042.729516 1881.766   820.650065 2103.845 
Aug 2004     1462.225 1015.882701 1908.568   779.603290 2144.847 
Sep 2004      1462.232  990.583171 1933.881   740.907336 2183.557 
Oct 2004      1462.230  966.566482 1957.893   704.178108 2220.282 
Nov 2004     1462.231  943.663041 1980.798   669.149970 2255.311 
Dec 2004     1462.230  921.728579 2002.732   635.604212 2288.857 
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Figure 10 : Time Series plot of fitted values from ARIMA (1,1,0) 

 

4.2 Diagnostics 
 

The verification of the ARIMA (1, 1, 0) model goodness-of-fit as compared to the original series are done using 
the residual diagnostic tests and the over fitting process. 
 

The ACF function and Box-Ljung test being used as a diagnostic test is employed in the computation of the 
correlogram of the inaccuracy in the forecast derived from ARIMA (1, 1, 0) model. 
 

Box-Pierce test 
data:  arima2forecast$residual 
X-squared = 0.1645, df = 1, p-value = 0.6851 
The correlogram and Box-Ljung test suggest that model assumptions are valid for the ARIMA model.  

 
Figure 11:  ARIMA (1, 1, and 0) is the source of this ACF of residuals 

  

An indication that the residuals are independent and identically distributed around the value zero are given by 
normal Probability Plot, Histogram and index plot of residuals from ARIMA(1,1,0). 

 
Figure 12: Normal Probability Plot of residuals  
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Figure 13: Histogram of residuals from ARIMA (1,1,0)  

 
Figure 14: Index Plot of residuals from ARIMA(1,1,0) 

 

4.3 The Model Validation  
 

Values predicted are compared with the true values of the series in the validation period. The following table 
gives a comparison of actual and forecasted values during the initial months of the data validation period.  
 

 Actual Forecast L. CI 95 U. CI.95 
Jan ,2004 1477 1482.264 1177.33 1787.197 
Feb, 2004 1369 1456.056 1085.263 1826.85 
Mar, 2004 1531 1464.133 1022.49 1905.777 
April, 2004 1177 1461.644 963.2395 1960.049 
May,2004 1519 1462.411 911.9171 2012.905 

 

The above table suggests that the forecasted values of number of barrels are very close to the true value.  

 
 

Figure 15: Plot of Time series values in the data validation period.  
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5. Conclusions  
 

This study focuses the time series modeling of U S importations of Saudi petroleum and its products and sources 
of this information is the United States Energy Information Administration (EIA).Exponential smoothing 
techniques and Box-Henkin ARIMA techniques are used for this purpose.  The accuracy of the fitted values is 
evaluated using model diagnostics methods and comparing the predicted values with observed number of barrels.  
The best fitted model for the series as suggested by the analysis suggest ARIMA (1, 1, 0). The analysis of 
residuals from the model suggests that the residuals satisfy the model assumptions perfectly. The predicted from 
the model is compared with the values of the series in the validation period. It was found that the forecasted 
values are very close to the original values of the series in the validation period.  
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