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Abstract 
 

It is known that parametric and nonparametric methods are used for nonlinear time series. In recently, hybrid 
models are also considered in time series forecasting. In this paper we present the hybrid models whose 
components are parametric and nonparametric models. Of the parametric methods, autoregressive (AR) 
model and self-threshold value (SETAR) model and, of the nonparametric methods, additive regression 
model (ARM) and hybrid AR&AAR, AR&SETAR, AAR&SETAR, SETAR&AR, SETAR&AAR and AAR&AR 
models are used in this study. In this context, back fitting algorithm based on smoothing spline method in 
the existing literature is discussed.  A comparison has been made for the performance of the models 
obtained for the export volume index numbers and domestic producer price index data for Turkey. These 
results showed that AAR&SETAR hybrid model has denoted the best performance among the all models in time 
series forecasting. 
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1. Introduction 
 

In recently, nonparametric regression methods called as semi parametric and additive regression have become a 
very useful tool for non-linear data such as time series (Eva et. al., 2000). However, these approaches do not 
perform well when seasonality is present. The errors of a regression model are generally possible to be used in the 
estimations of auto correlated time series. The studies regarding to this subject is performed by Engle, Granger, 
Rice and Weiss (1986); Harvey and Koopman (1993). When the errors are auto correlated, non-parametric 
estimation methods can be used. Altman (1990); Hurvich and Zeger (1990); Hart (1991, 1994) have correlated the 
time with single-variable non-parametric methods as the independent variable. Autoregressive model for the 
errors (Smith, Wong and Kohn, 1998), 

= ( ) +      1,...,,t t ty f x u t = n  (1) 

can be identifies as above. Here ty  is the dependent variable, ( )tf x  is the unknown regression function of the 
independent variable tx  and tu  is a constant autocorrelation error series. The errors are modeled in zero mean s.th 
level constant autoregressive process as below:  

1 -1 ( )2
t t s t -s t tu = θ u +...+ θ u  + ε ,  ε ΝIID 0,σ�  (2) 

Most of the approaches used frequently in the development of time series models are obtained from a linear 
Gaussian process (Box, Jenkins and Reinsel, 1994). Among the important causes of such concerns interested in 
linear Gaussian models providing various attractive properties; physical interpretations that are not successful in 
producing various nonlinear models, frequency analysis, asymptotic results, statistical inference can be stated.  
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Despite such advantages, real existence system generally consists of numerous nonlinear properties and such 
properties cannot be explained completely by the linear statistical models. In other words, linear models are 
insufficient in explaining specific properties of economical and financial data. 
 

Because economical and financial systems consist of both structural and behavioral changes, it is required to use 
different time series in order to explain the experimental data at different times. In order to model the nonlinear 
behavior in the time series; it is required to get different dynamics in different models and to have different 
models exist. Nonlinear time series have started to gain value in the later years of 1970 and have become famous 
because of the necessity to model the nonlinear dynamics with real data (Tong, 2007). Starting from this point of 
view; first of all threshold autoregressive model (TAR) which is formed of different models and is defined by 
autoregressive (AR) model or simply the Self-Exciting Threshold Model (SETAR) model is taken into 
consideration. This model provides an important point of view for constant time series. TAR model is formed of 
piecewise linear models and its general opinion is to change the parameters of a linear AR model according to the 
value of a visibly single variable which can be named as threshold variable. If this variable is a lagged variable of 
the time series, it is called as the SETAR model. Another approach in the time series can be given as an additive 
regression model (ARM) estimation which is a nonparametric autocorrelation model.  
 

Each of the nonlinear components is modeled as a regression spline using more than one nodal point, on the other 
hand the errors are modeled by a high-degree constant autoregressive process which is parameterized according to 
the partial autocorrelations.  Every non-parametric function forming model (10) which is defined as the additive 
type of the model given in equation (1) is based on the non-parametric correction methods such as local weighed 
polynomial (Fan and Gijbels, 1996) and spline correction (Green and Silverman, 1994) or penalized regression 
spline (Eilers and Marx, 1996) etc and can be estimated by using the “backfitting algorithm” given by Hastie and 
Tibshirani (1990). Every non-parametric term in Model (10) is the functions which are represented by penalized 
cubic spline regressions. Such functions can also be estimated by using the “mgcv package” in R environment, as 
specified in the study of Wood (2000).  A hybrid approach that Tseng et al.(2002) and Zhang(2003) in their 
studies recommend a hybrid approach that uses autoregressive integrated moving average (ARIMA) . In addition, 
Aslanargun et al.(2007) demonstrated that hybrid models combines models with two nonlinear components have 
had the best performance for time series forecasting. Zhang (2003) explains the reasons of using hybrid models in 
detail. This paper generalizes the hybrid models studied by Zhang(2003) for parametric and nonparametric 
regression models. Consequently, hybrid model has indicated the best performance among all the models for time 
series forecasting. 

 

2. Methods Used In the Prediction of Time Series 
 

In modeling the non-linear behaviors, it is possible to show economical and financial time series of different 
countries with different equations. This section emphasizes on the models assuming the time series determined by 
an autoregressive AR, self-exciting threshold autoregressive SETAR and ARM models behave differently in 
every time series. 

 

 2.1 AR Model 
 

If the values of the dependent ty  variable regarding to the previous periods consist of t -1y , t -2y ,…, t - py  then such 
models are called as autoregressive model. First-degree autoregressive AR(1) model is given by  

0 1  

= +   �

t t -1 t

2
t t -1 t t

y = β + β y + u  

u u ε , ε ΝIID (0,σ )  
 (3) 

In first-degree autoregressive statistical model;   is the unknown autocorrelation parameter that is assumed to 
have a value between -1 and +1 and tε is an independent error term with zero mean and a constant 2

εσ  variance.   
Statistical model structure given in equation (3) is defined as the AR (1) time series model or the AR (1) process. 
Similarly, second-degree autoregressive AR (2) model can be written as 

0 2 2

-1 2 -1

 

+ ,   
 

 �

t t - t - t

2
t t t t t

y = β + β y + β y + u  

u = u + u ε ε Ν IID (0 ,σ )  
 (4) 
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More generally it is possible to define a statistical model stating the p-level autoregressive AR process. Thus 
AR(p) model can be written as follows, 

0 1 2

-1 2 -1 -

= + + + .. . + +

+ .. .. + ,     �

t t -1 t - 2 p t - p t

2
t t t p t p t t

y y y y u

u = u + u u ε ε Ν IID (0 ,σ )

   

   
 (5) 

Here, 1 2 ,...,  P  are the unknown autoregressive parameters (Dagum and Giannerini, 2006). 
 

2.2 SETAR Model 
 

One of the popular methods used in non-linear time series models, TAR (Threshold Auto Regressive) model, was 
firstly offered by Tong (1978) and then it was considered in detail. SETAR (Self-Exciting TAR) model is a 
special case of TAR model. Piecewise linear models known as SETAR, develops the simplest class of non-linear 
models. Simple AR models constituting the SETAR model can be easily estimated by using the regression 
methods. In order to consider the non-linear behaviors, AR models are expanded and non-linear models become 
as easily understandable and interpretable. Detailed scope of the SETAR model and its statistical properties can 
be found in Tong (1990). This model is widely used to asymmetrical modeling of the economical series. For 
example, Pfann, Schotman and Tschernig (1996) have discussed that the interest ratios in America have more 
equations than one and estimated such series via the SETAR model in their article. Again such models are used 
by Henry, Olekalns and summers (2001) for the exchange rate modeling. Also detailed information and examples 
about the usage of non-linear SETAR models in the time series analysis and the applications in various areas can 
be found in the articles of Tong and Lim (1980); Tong (1983, 1990); Granger and Terasvirta (1993); Franses and 
Dijk (2000), Chan and Tong (2001).  
 

Despite the simplicity of TAR model form, numerous parameters should be predicted and the variables should be 
selected in the formation of a TAR model. This situation has prevented the early usage of the method. However, 
in recent years, an improvement is shown in the properties and prediction of TAR models (Zivot, 2005). SETAR 
models have several types. In this article, only the two-equation SETAR model which is formed of two linear sub 
models related to the situation of the threshold and which is defined by Tong (1990) is taken as a basis. For the 
ease of presentation, SETAR (1) shows the one-equation linear AR model for k = 1 and SETAR (2) shows the 
two-equation TAR model for k = 2. For one-equation SETAR (1) model, −∞ =r0< r1 <···< rk = ∞ and unknown 
parameters Θ = (  (1) , σ (1)); and for two-equation SETAR (2) model, single threshold value −∞ < r1 < ∞ and 
unknown parameters Θ = ( (1), (2),σ (1),σ (2)) are shown. Lagging parameter d is a positive integer and the 
threshold variable for the SETAR model is a known lagged value of the process itself. First-degree SETAR model 
is defined as follows: 

1,0 1,1 1 1 1

2,0 2,1 1 2 1

,

,
t t t

t
t t t

y e y r
y

y e y r
  

  
 

 

      
 (6) 

Here  ’s are the autoregressive parameters.   Is the noise standard deviation, r  is the threshold value parameter 
and te  is the unit variance and zero mean independent and uniform random error terms. Conditional distribution 
of ty is the same as the first AR(1) sub model which is ready to use with 1,0  constant term and 1,1  autoregressive 

coefficient and 2
1  error variance. On the other hand, if the 1st lagging value of ty exceeds the r  threshold value, 

second AR(1) period with the parameter 2
2,0 2,1 2, ,    is ready to use. 

First-degree SETAR model can be easily expanded to a high-degree with an integer lagging value: 

1 1

2 2

1,0 1,1 1 1, 1

2,0 2,1 1 2, 2

... ,

... ,
t p t p t t d

t
t p t p t t d

y y e y r
y

y y e y r

   

   
  

  

          
 (7) 
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Here, it is not required to have 1 2p ve p  autoregressive levels of two sub models the same and d  lagging 
parameter can be bigger than the maximum autoregressive level. However in order to simplify the notation, it can 
be assumed that 1 2 1p p p ve d p    . TAR model defined with the equation (7) is shown as the d  lagged 

 1 22, ,TAR p p  model. 
 

2.3 ARM Model 
 

Another method used in the prediction of non-linear time series is the ARM model. This model is a more flexible 
method than the standard regression model.  
 

Here, ARM Model can be defined as follows,  

( ) ( )  t t t ty f x g z u  (8) 

for x and z independent variables. In equation (8); when the ut errors are independent from each other, “backfitting 
algorithm” developed by Hastie and Tibshirani (1990) is used for the prediction of f and g functions. However, 
there is no backfitting algorithm for the auto correlated incorrect additive regression model. Thus, when tu  
incorrect (8) model developed by 1 1 t tu u   first degree autocorrelation is taken into consideration, this 
model will be equivalent to the model specified as follows: 

1 1 1( ) ( ) ( ) ( )       t t t t t t ty y f x g z f x g z     (9) 

Here t  errors have independent and same distribution with zero mean and 2  variance                       
( 2~ (0, )t NIID  ). In equation (9); if it is written as 1t tv x , 1t tw z , 1( ) ( )f x f x  and 1( ) ( )g x g x , the said 
model is defined as follows: 

1 1 1( ) ( ) ( ) ( )     t t t t t t ty y f x g z f v g w     (10) 

“Backfitting algorithm” can be applied to the equation (10) which gives the predictive of f and g non-parametric 
functions by considering f , g , 1f  and 1g  as four different functions.  
 

2.4 The Hybrid Methodology 
 

Hybrid methodology that has both linear and nonlinear modeling capabilities can be a good strategy for practical 
use. By combining different models, different aspects of the underlying patterns may be captured. Hence, hybrid 
model structure of Zhang (2003) can be generalized. In this paper, hybrid models whose components are different 
parametric and nonparametric regression models are evaluated for time series. The hybridized model which was 
suggested is defined as follows: 
                                     21

ttt yyy                                                          (11) 

In this model, ty  is the observation value at time point t, 1
ty and 2

ty are linear or nonlinear model components, 
superscripts denote the row number of the model. Firstly the model with 1-indiced is applied to the observation 
data and 11 ˆ ttt yye  , then the others are calculated. Here 1ˆ ty  is the forecast value of the first model at time point 

t. If the first model contains 1m  input units, the number of 1
te  units will be 1N m . If the second model contains 

2m  input units, the number of 2ˆ ty forecast values will be 1 2N m m  . In this case, the forecast values 
appropriate for the second model are calculated as follows: 
                              

2

2
2 1 2ˆ ( , ,..., )t t t t my f e e e                                               (12) 

where 2f  is the function obtained from the second model. Thus,  the forecast for the combined model is defined 
as follows: 



International Journal of Applied Science and Technology                                           Vol. 5, No. 6; December 2015 
 

91 

                                           21 ˆˆˆ ttt yyy                                                        (13) 
The adjusted forecasts are calculated as the sums of the first model and the second model. The hybrid model with 
good performance is obtained by the model evaluation criteria for the forecasting. 
 

3. Experimental Evaluations 
 

We illustrate our methods with applications to two univariate time series. The first application is monthly export 
volume index data for the time period 1997-2014.  The second is the monthly domestic producer price index data 
for the time period 2006-2014. We follow Ghaddar and Tong (1981) and make a square-root 
transformation   2 1 1y N   , where N  denotes the raw data series.  For two real data sets y  values 

indicated as observations are displayed in Figures 1 and 3, respectively.   
 
In order to evaluate the predictions of a model with observations, the following statistical performance measures, 
which include the mean square error (MSE) or the root mean square error  (RMSE), the Mean absolute error 
(MAE) and the mean absolute percentage error (MAPE) have been used (Goh and Law, 2002). Forecast 
evaluation measurements are defined as following way:  

2

1

)ˆ(1
t

n

t
t yy

n
MSE  



  



n

t
tt yy

n
RMSE

1

2ˆ1
 





n

t
tt yy

n
MAE

1

ˆ1
 )100(%

ˆ1
1






n

t t

tt

y
yy

n
MAPE  

where ty  is represent the observed values; tŷ  is indicate the forecasted values and Mean  is the arithmetic mean 
value . 
A perfect model would have MSE or RMSE, MAE and MAPE  0.00; naturally, because of the influence of 
random errors, there is no such thing as a perfect model in time series modeling. For numerical calculations, R 
statistical packaged program is used. 
 

3.1 Real Data Example 1 
 

Within the scope of this study; the data of the monthly export volume index numbers, between 1997:12-2014:12 
(2010=100) are used. Export volume index data are taken from the web page of TUİK.  The data set is divided 
into two parts for the use in training and forecasting. In the first part, 192 monthly data are taken into account for 
the period of the January 1997–December 2012 period. These data are used in training stage to construct the 
models. In the second part, with the help of the models constructed in the first part, the performances of those 
models are calculated using the 24 monthly test data for the January 2013–December 2014 period. We used a 
nonparametric regression model called as additive regression model (ARM). Estimation of the ARM in equation 
(8) is obtained by using backfitting algorithm. There is a selection problem of the smoothing parameter   
included in this method. The parameter   is selected by using generalized cross validation (GCV).  The observed 
and estimation values from nonparametric ARM and parametric AR2 in equation (4) and SETAR in equation (7) 
are demonstrated in Figure 1. 
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Figure 1:  Observed monthly export volume index values and their estimated values obtained by AR2, 
ARM and SETAR models 

 
 

In the determining hybrid models whose first component is nonparametric regression, firstly, the nonparametric 
regression model was applied to the real data set composed of 192 cases, and then, the 192 residuals were 
obtained for the first data sets. At the next step, to construct the second component of hybrid model, parametric 
model was applied to the 192 residuals data.  Thus, hybrid model is obtained by combining the estimations in 
these two steps. Similarly, it is obtained 6 different hybrid models such as AR2&AAR, AR2&SETAR, 
AAR&SETAR, SETAR&AR, SETAR&AAR and AAR&AR models.  
 

Table 1: Performance Values of the Models for Export Volume Index Numbers 
 

 

Models MAE MAPE MSE RMSE 
AR2 0.7832594 3.799851 0.8460767 0.9198243 
SETAR 0.5584736 2.779853 0. 603419 0.7768005 
AAR 0.5679738 2.832754 0.6229199 0.7892527 
AR2&AAR 0.8611482 4.162941 0.9438735 0.9715315 
AR2&SETAR 0.8122842 3.934331 0.9035898 0.9505734 
AAR&SETAR 0.5564938 2.767973 0.5908856 0.7686908 
SETAR&AR2 0.5619007 2.797629 0.6162787 0.7850342 
SETAR&AAR 0.6258759 3.086900 0.6384326 0.7990198 
AAR&AR2 0.5680712 2.833124 0.6233602 0.7895316 
 

An evaluation of the models was made depending on the forecasts for the 24 monthly data between 2013–2014 
period. For the 24 monthly test data, the performances of these models are carried out and compared by using the 
MAE, MAPE, MSE and RMSE values. The mentioned these values are given in Table 1.  As can be seen from 
Table 1, according to the export volume index data sets, SETAR model has a good performance among the 
models such as AR2 and ARM. On the other hand, the hybrid models whose first component is parametric 
regression, SETAR&AR2 has demonstrated a good performance, whereas the hybrid models whose first 
component is nonparametric regression, AAR&SETAR model, has demonstrated the best performance.  For test 
data composed of the 24 values, the observed and forecasted values obtained by nine different models are 
calculated, but they are only given graphically for the three models because of space limitations. The only 
observed and forecasted values by the AR2, ARM and the hybrid models are given in Figure 2. 
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Figure 2:  Observed data specified by sign circle and their forecasted values obtained by different    

parametric, nonparametric and hybrid models for the January 2013–December 2014 period 
 

3.2 Real Data Example 2 
 

The monthly domestic producer price index data sets are used for the second application. As in first data set, this 
data set is also divided into two parts for the use in training and forecasting. In the first part, 84 monthly data are 
taken into account for the period of the January 2006–December 2012 period.  
 

These data are used in training stage to construct the models.  In the second part, with the help of the models 
constructed in the first part, the performances of those models are calculated using the 24 monthly test data for the 
January 2013–December 2014 period. As in the first application, ARM is considered as nonparametric regression, 
whereas AR2 and SETAR are used parametric regression models. Estimation of the ARM in equation (6) is 
obtained by using back fitting algorithm. There is a selection problem of the smoothing parameter   included in 
this method. The parameter   is selected by using generalized cross validation (GCV).  The observed and 
estimation values from nonparametric ARM and parametric AR2 in equation (4) and SETAR in equation (7) are 
demonstrated in Figure 2.In the determining hybrid models whose first component is nonparametric regression, 
firstly, the nonparametric regression model was applied to the real data set composed of 84 cases, and then, the 84 
residuals were obtained for the first data sets. At the next step, to construct the second component of hybrid 
model, parametric model was applied to the 84 residuals data. Thus, hybrid model is obtained by combining the 
estimations in these two steps. Similarly, it is obtained 6 different hybrid models such as AR2&AAR, 
AR2&SETAR, AAR&SETAR, SETAR&AR, SETAR&AAR and AAR&AR models. 
 

 
 

Figure 3: Observed monthly domestic producer price index values and their estimated values obtained by 
AR2, SETAR and ARM models 
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Table 2: Performance Values of the Models for the Domestic Producer Price Index Data 
 
 

Models MAE MAPE MSE RMSE 
AR2 0.09953025 2.745957 0.01632611 0.1277737 
AAR 0.09394687 2.667006 0.01269961 0.1126925 
SETAR 0.10588890 2.939485 0.01794904 0.1339740 
AR2&AAR 0.10027430 2.777185 0.01638269 0.1279949 
AR2&SETAR 0.10143740 2.803090 0.01659169 0.1288087 
AAR&SETAR 0.09232388 2.617244 0.01234716 0.1111178 
SETAR&AR2 0.10482240 2.905108 0.01778102 0.1333455 
SETAR&AAR 0.10706090 2.978552 0.01815183 0.1347287 
AAR&AR2 0.09375183 2.660544 0.01269344 0.1126652 
 

An evaluation of the models was made depending on the forecasts for the 24 monthly data between 2013–2014 
periods. For the 24 monthly test data, the performances of these models are carried out and compared by using the 
MAE, MAPE, MSE and RMSE values. The mentioned these values are given in Table 2.  As can be seen from 
Table 2, according to the export volume index data sets, AAR model has a good performance among the models 
such as AR2 and ARM. On the other hand, the hybrid model whose second component is parametric model 
AAR&AR2 has demonstrated a good performance.   
 

As in application 1, the hybrid models whose first component is nonparametric AAR&SETAR model has 
demonstrated the best performance for the domestic producer price index data. For test data composed of the 24 
values, the observed and forecasted values obtained by nine different models are calculated, but they are only 
given graphically for the three models because of space limitations. The only observed and forecasted values by 
the AR2, ARM and the hybrid models are given in Figure 3. 
 

 
 

Figure 4: Observed data specified by sign circle, the forecasted values specified by different parametric, 
nonparametric and hybrid models for January 2013–December 2014 period 

 

4. Result and Evaluation 
 

It is known that hybrid models indicate very good performance in time series forecasting problems. Zhang (2003) 
reported that hybrid models where a component is linear and the other is nonlinear have demonstrated a good 
performance in time series forecasting. Then, it is discussed in Aslanargun (2007) that using hybrid models, 
whose components are nonlinear, more effective. As specified in the introduction; AR, SETAR and ARM models 
are commonly used in the prediction of non-linear economical time series. Non-parametric regression techniques 
try to specify the relationship between the variables without considering any functional status of the model. These 
techniques try to determine the functional type of the model directly instead of calculating the model parameters.  
 

In the study; the export volume index numbers and domestic producer price index and rate of change for Turkey 
are predicted by the AR, SETAR and ARM models and hybrid models as the performance indicators of such 
models, MAE, MAPE, MSE and RMSE values are calculated. When Table 1 and Table 2 are examined; the 
lowest MAE, MAPE, MSE and RMSE are obtained for the AAR&SETAR model.  
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These values are found as 6.463981, 5.371849, 79.64720 and 8.924528 for the export volume index numbers and 
0.09232388, 2.617244, 0.01234716 and 0.1111178 domestic producer price index data sets, respectively. In this 
case, we observed that hybrid models make more better forecasting in the time series forecasting problems based 
on the export volume index numbers and domestic producer price index data sets for Turkey. As a result, our  
opinion is that, using hybrid models, whose components are nonparametric regression can be useful in time series 
forecasting problems included seasonality and trend.   
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