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Abstract 
 

Attention was focused on the explicit Exponential Time Differencing (ETD) integrators that are designed to solve 

stiff semi-linear problems. Semi-linear PDEs can be split into a linear part, which contains the stiffest part of the 

dynamics of the problem, and a nonlinear part, which varies more slowly than the linear part. The ETD methods 

solve the linear part exactly, and then explicitly approximate the remaining part by polynomial approximations. 

The research involves an analytical examination and comparison of the asymptotic stability properties of some 

Exponential Time Differencing Schemes (ETD1, ETD2, ETD2RK1 and ETD2RK2) methods in order to present 

the advantage of these methods in overcoming the stability constraints.  
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Introduction 
 

Various problems in the world can be solved when they are modeled and presented in the form of an ordinary 

differential equation or partial differential equation. However, there are times where different phenomena acting 

on very different time scales occur simultaneously introducing a parameter called stiff parameter which 

sometimes makes it difficult to solve. All differential equations with this property are said to be stiff differential 

equations. According to Curtiss, et al (1952) the earliest detection of stiffness in differential equations in the 

digital computer era, was apparently far in advance of its time. They named the phenomenon and spotted the 

nature of stiffness (stability requirement dictates the choice of the step size to be very small).To resolve the 

problem they recommended possible methods such as the Backward Differentiation Formula for numerical 

integration. This study looked at how to solve stiff differential equations using the Exponential Time Differencing 

Schemes making reference to their asymptotic stabilities. 
 

Related Works 
 

In 1963, Dahlquist defined the stiff problem and demonstrated the difficulties that standard differential equation 

solvers have with stiff differential equations. Dahlquist et al (1973), defined a stiff system as one containing very 

fast components as well as very slow components; they represent coupled physical systems having components 

varying with very different time scales: that is, they are systems having some components varying much more 

rapidly than the others. Another significant person worth mentioning in this field of studies is Gear. He made 

considerable efforts to develop numerical integration for stiff problems and hence brought the attention of the 

mathematical and computer science community to stiff problems.(Gear,1968). Hairer, et al (1996) studied 

different methods of solving differential equations and identified that all the explicit methods were unable to solve 

a particular type of differential equation (called stiff differential equation). They defined stiff equation as a 

problem for which explicit methods don’t work. 
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According to Du (2004), Exponential Time Differencing schemes are time integration methods that can be 

efficiently combined with spatial spectral approximations to provide very high resolution to the smooth solutions 

of some linear and nonlinear partial differential equations. Du, explained in his paper the stability properties of 

some exponential time differencing schemes, he also presented their application to the numerical solution of the 

scalar Allen-Cahn equation in two and three dimensional spaces. Livermore et al (2007) explained that over the 

last decade there has been renewed interest in applying exponential time differencing (ETD) schemes to the 

solution of stiff systems. He presented an implementation of such a scheme to the fully spectral solution of the 

incompressible magneto hydrodynamic equations in a spherical shell. Quit recently, Hala have carried out some 

research on the stability of numerical methods. According to Hala (2008), the stability of a given method for 

solving a system of ODE is a theoretical measure of the extent to which the method produces satisfactory 

approximation. According to him, stability is related to the accuracy of the methods and are referred to as errors 

not growing in subsequent steps.  
 

According to Thohura, et al (2013), although a number of methods have been developed and many more basic 

formulas suggested for stiff equations, until recently there has been little advice or guidance to help a practitioner 

choose a good method for this problem. In case of stiff differential equations, stability requirements force the 

solver to take a lot of small time steps; this happens when we have a system of coupled differential equations that 

have two or more very different scales of the independent variable over which we are integrated. Various authors 

have looked at solutions of stiff differential equations using the Exponential Time Differencing (ETD) and 

Exponential Time Differencing Runge-Kutta (ETDRK) methods without checking their stability. This study seeks 

to compare the asymptotic stability of some of these methods and to obtain stability expressions for these 

numerical schemes. 
 

Model Formulation 
 

To derive the s-step ETD schemes, consider for simplicity a single model of stiff ODE 
𝑑𝑢 𝑡 

𝑑𝑡
= 𝑐𝑢 𝑡 + 𝐹 𝑢 𝑡 , 𝑡                          (1) 

 we multiply equation (1) through by the integrating factor 𝑒−𝑐𝑡 , and then integrate the equation over a single time 

step from 𝑡 = 𝑡𝑛  to 𝑡 = 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 to get 

𝑢 𝑡𝑛+1 = 𝑢 𝑡𝑛 𝑒
𝑐∆𝑡 + 𝑒𝑐∆𝑡  𝑒−𝑐𝜏𝐹 𝑢(𝑡𝑛 + 𝜏), 𝑡𝑛 + 𝜏 𝑑𝜏

∆𝑡

0

                    (2) 

This formula is exact, and the next step is to derive approximations to the integral in equation (2). This procedure 

does not introduce an unwanted fast time scale into the solution and the schemes can be generalized to arbitrary 

order. 

If we apply the Newton Backward Difference Formula, using information about  F u(t , t) at the nth and previous 

time steps, we can write a polynomial approximation to 𝐹 𝑢 𝑡𝑛 + 𝜏 , 𝑡𝑛 + 𝜏  in the form 

𝐹 𝑢 𝑡𝑛 + 𝜏 , 𝑡𝑛 + 𝜏 ≈ 𝐺𝑛 𝑡𝑛 + 𝜏 =   −1 𝑚  −𝜏 ∆𝑡 
𝑚

 𝑠−1
𝑚=0 𝛻𝑚𝐺𝑛 𝑡𝑛 ,                      (3)                                  

where 𝛻 is the backward difference operator defined as follows 

𝛻𝑚𝐺𝑛 𝑡𝑛 =   −1 𝑘  
𝑚
𝑘
 

𝑚

𝑘=0

𝐺𝑛−𝑘 𝑡𝑛−𝑘 , 

≈   −1 𝑘
𝑚

𝑘=0

 
𝑚
𝑘
 𝐹 𝑢 𝑡𝑛−𝑘 , 𝑡𝑛−𝑘 ,                     4  

and  𝑚!  
−𝑞
𝑚
 =  −𝑞  −𝑞 − 1 …  −𝑞 −𝑚 + 1 ,𝑚 = 1,… . . , 𝑠 − 1 

(note that 0!  
−𝑞
0
 = 1. If we substitute the approximation equation (3) in the integrand equation (2), we get 

𝑢 𝑡𝑛+1 − 𝑢 𝑡𝑛 𝑒
𝑐∆𝑡 ≈ ∆𝑡   −1 𝑚

𝑠−1

𝑚=0

 𝑒𝑐∆𝑡 1−𝑞  
−𝑞
𝑚
 𝑑𝑞𝛻𝑚

1

0

𝐺𝑛 𝑡𝑛               5  

Where 𝑞 = 𝜏 ∆𝑡 . 

We will indicate the integral in equation (5) by 
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𝑔𝑚 =  −1 𝑚  𝑒𝑐∆𝑡 1−𝑞 
1

0

 
−𝑞
𝑚
 𝑑𝑞,                   6  

and then calculate the 𝑔𝑚  by bringing in the generating function. For 𝑧 ∈ 𝑅,  𝑧 < 1, we define the generating 

function 

𝛤 𝑧 =  𝑔𝑚𝑧
𝑚

∞

𝑚=0

, 

 

=  𝑒𝑐∆𝑡 1−𝑞 
1

0

  
−𝑞
𝑚
  −𝑧 𝑚

∞

𝑚=0

𝑑𝑞, 

=  𝑒𝑐∆𝑡 1−𝑞  1 − 𝑧 −𝑞𝑑𝑞,
1

0

 

=
𝑒𝑐∆𝑡 1 − 𝑧 − 𝑒−𝑐∆𝑡 

 1 − 𝑧  𝑐∆𝑡 + 𝑙𝑜𝑔 1 − 𝑧  
                         7  

Rearranging equation (7) to form 

 𝑐∆𝑡 + 𝑙𝑜𝑔 1 − 𝑧  𝛤 𝑧 = 𝑒𝑐∆𝑡 −  1 − 𝑧 −1, 
and expanding as a power series in z 

 𝑐∆𝑡 − 𝑧 −
𝑧2

2
−

𝑧3

3
−⋯  𝑔0 + 𝑔1𝑧 + 𝑔2𝑧

2 + ⋯ = 𝑒𝑐∆𝑡 − 1 − 𝑧 − 𝑧2 − 𝑧3 −⋯,  

we can find a recurrence relation for the 𝑔𝑚  for 𝑚 ≥ 0 by equating like powers of z 

𝑐∆𝑡𝑔𝑜 = 𝑒𝑐∆𝑡 − 1,                                 (7a) 

 

𝑐∆𝑡𝑔𝑚+1 + 1 = 𝑔𝑚 +
1

2
𝑔𝑚−1 +

1

3
𝑔𝑚−2 + ⋯+

1

𝑚 + 1
𝑔0 =  

1

𝑚 + 1 − 𝑘
𝑔𝑘            8 

𝑚

𝑘=0

 

Haven determined the 𝑔𝑚 , the ETD schemes equation (5) then can be given in explicit forms. 

Substituting equation (4) and equation (6) in equation (5), we deduce the general generating formula of ETD 

schemes of order s 

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 + ∆𝑡  𝑔𝑚   −1 𝑘  

𝑚
𝑘
 

𝑚

𝑘=0

𝑠−1

𝑚=0

𝐹𝑛−𝑘                   9  

where 𝑢𝑛  and 𝐹𝑛denote the numerical approximation to u(𝑡𝑛  and F(u(𝑡𝑛 , 𝑡𝑛  respectively, and the 𝑔𝑚  are given by 

equation (8). 

 

ETD Schemes 

ETD1 Scheme 

From equation (7a) above, 𝑔0 can be written as  

𝑔0 =
𝑒𝑐∆𝑡 − 1

𝑐∆𝑡
 

To obtain the ETD1 scheme, we set 𝑠 = 1 in the explicit generating formula equation (9) to get 

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 + ∆𝑡𝑔0𝐹𝑛  

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 + ∆𝑡  

𝑒𝑐∆𝑡−1

𝑐∆𝑡
 𝐹𝑛 , hence the ETD1 scheme is given by;   

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 +  𝑒𝑐∆𝑡 − 1 𝐹𝑛 𝑐,                      10   

 

ETD2 Scheme 

In the same manner, setting 𝑠 = 2 in equation (9) gives us the second-order ETD2 scheme 

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 +

   𝑐∆𝑡 + 1 𝑒𝑐∆𝑡 − 2𝑐∆𝑡 − 1 𝐹𝑛 +  −𝑒𝑐∆𝑡 + 𝑐∆𝑡 + 1 𝐹𝑛−1 

𝑐2∆𝑡
                  11  
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Generally, for the one-step time-discretization methods and the Runge-Kutta (RK) methods, all the information 

required to start the integration is available. However, for the multi-step time-discretization methods this is not 

true.  

These methods require the evaluations of a certain number of starting values of the nonlinear term 𝐹 𝑢 𝑡 , 𝑡 at the 

nth and previous time steps to build the history required for the calculations. Therefore, it is desirable to construct 

ETD methods that are based on RK methods. 
 

ETD Runge - Kutta Schemes 
 

Cox et al (2002), constructed a second-order ETD Runge-Kutta method, analogous to the “improved Euler” 

method given as follows.  

ETDRK1 Scheme 

Putting 𝑠 = 1 in equation (9) gives   

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 +  𝑒𝑐∆𝑡 − 1 𝐹𝑛 𝑐 .                  12  

Let 𝑎𝑛 ≈ 𝑢𝑛+1, than it implies that 

𝑎𝑛 = 𝑢𝑛𝑒
𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 𝐹𝑛
𝑐

                     13  

The term𝑎𝑛approximates the value of u at 𝑡𝑛 + ∆𝑡. The next step is to approximate F in the interval 𝑡𝑛 ≤ 𝑡 ≤
𝑡𝑛+1, with 

𝐹 = 𝐹𝑛 +  𝑡 − 𝑡𝑛  𝐹 𝑎𝑛 , 𝑡𝑛 + ∆𝑡 − 𝐹𝑛 ∆ 𝑡 + 𝑂 ∆𝑡2  
and substitute into equation (13) to give the ETD2RK1 scheme 

𝑢𝑛+1 = 𝑎𝑛 +  𝑒𝑐∆𝑡 − 𝑐∆𝑡 − 1  𝐹 𝑎𝑛 , 𝑡𝑛 + ∆𝑡 − 𝐹𝑛  𝑐2∆𝑡  .                          14  
 

ETD2RK2 Scheme 

In a similar way, we can also form an ETD2RK2 scheme analogous to the “modified Euler” method. The first 

step 

𝑎𝑛 = 𝑢𝑛𝑒
𝑐∆𝑡 2 +  𝑒

𝑐∆𝑡

2 − 1 𝐹𝑛 𝑐 , 

is formed by taking half a step of equation (13); then use the approximation 

𝐹 = 𝐹𝑛 +
 𝑡−𝑡𝑛  

∆𝑡 2 
 𝐹 𝑎𝑛 , 𝑡𝑛 + ∆ 𝑡 2  − 𝐹𝑛 + 𝑂 ∆𝑡2 ,  

in the interval  𝑡𝑛 , 𝑡𝑛 + ∆𝑡  in equation (2) to deduce the ETD2RK2 scheme 

𝑢𝑛+1 = 𝑢𝑛𝑒
𝑐∆𝑡 +    𝑐∆𝑡 − 2 𝑒𝑐∆𝑡 + 𝑐∆𝑡 + 2 𝐹𝑛 + 2 𝑒𝑐∆𝑡 − 𝑐∆𝑡 − 1 𝐹 𝑎𝑛 , 𝑡𝑛 + ∆ 𝑡 2   𝑐2 ∆𝑡          (15)                                                                                            

 

Finally, we note that as 𝑐 → 0 in the coefficients of the s-order ETD-RK methods, the methods reduce to the 

corresponding order of the Runge-Kutta schemes. 
 

Stability Analysis 
 

The approach developed by Beylkin, et al (1998) studied the stability for a family of explicit and implicit ELP 

schemes, and showed that these schemes have significantly better stability properties when compared with known 

implicit-explicit schemes. The approach developed for the stability analysis of composite schemes, i.e. schemes 

that use different methods for the linear and nonlinear parts of the equation, computes the boundaries of the 

stability regions for a general test problem. That is to analyze the stability of the ETD schemes, we linearize the 

autonomous ODE  
𝑑𝑢 𝑡 

𝑑𝑡
= 𝑐𝑢 𝑡 + 𝐹 𝑢 𝑡  ,                     16  

about a fixed point 𝑢0 (so that 𝑐𝑢0 + 𝐹 𝑢0 = 0, to obtain 
𝑑𝑢 𝑡 

𝑑𝑡
= 𝑐𝑢 𝑡 + 𝜆𝑢 𝑡 =  𝑐 + 𝜆 𝑢 𝑡 ,        17  

where 𝑢 𝑡  is the perturbation to 𝑢0 and 

𝜆 =
𝑑𝐹 𝑢 𝑡  

𝑑𝑢
 𝑢 𝑡 = 𝑢0

  

Again 𝐹 𝑢0 − 𝐹 𝑢𝑛 = 𝜆 𝑢0 − 𝜆 𝑢𝑛  
But 𝑢0 = 0 

Therefore, 𝐹(𝑢𝑛) = 𝜆𝑢𝑛                         18  
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In order to keep the fixed point 𝑢0  stable, we require ℜ 𝑐 + 𝜆 < 0 (note that the fixed points of the ETD 

methods are the same as those of the ODE equation (16), in contrast to the IF methods which do not preserve the 

fixed points for the ODE that they discretize. It seems desirable for a numerical method to fulfill this property 

with respect to capturing as much of the dynamics of the system as possible). If both 𝑐 and 𝜆 are complex, the 

stability region is four-dimensional. But if both 𝑐 and 𝜆 are pure imaginary or pure real, or if 𝜆 is complex and 𝑐 is 

fixed and real then the stability region is two-dimensional. This study concentrates on two cases to determine 

whether the schemes are asymptotically stable. The conditions are as follows; 
 

 c is fixed and negative and𝜆 and c are purely real. 

 𝑐 is negative and both c and 𝜆 are purely real. 
 

Algorithm 
 

To determine whether an exponential time differencing method is asymptotically stable, considering the problem  
𝑑𝑢 𝑡 

𝑑𝑡
= 𝑐𝑢 𝑡 + 𝜆𝑢 𝑡  

Step 1: Solve the problem using any one of the ETD1, ETD2, ETD2RK2 and ETD2RK2 methods. 

Step 2: Divide through the 𝑢𝑛+1 solution with 𝑢𝑛  to obtain an equation for 
𝑢𝑛+1

𝑢𝑛
 

Step 3: Set 𝑟 =
𝑢𝑛+1

𝑢𝑛
, 𝑥 = 𝜆∆𝑡 and 𝑦 = 𝑐∆𝑡, where c and 𝜆 are parameters in the given problem and ∆𝑡 is the time 

step. 

Step 4: For a scheme to be asymptotically stable then; 

𝑟 =
𝑢𝑛+1

𝑢𝑛
≤ 1 

Given the problem above, the asymptotic stability of the schemes can be determined as follows; 
 

Stability of ETD1 Scheme 
 

Equation (10) can be written in the form; 

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 

𝑐𝑢𝑛
𝐹𝑛                        19  

From equation (18), 𝐹𝑛  can be written as; 

𝐹𝑛 = 𝜆𝑢𝑛                     20  
 

 

Putting equation (20) in to equation (19), gives; 

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 

𝑐𝑢𝑛
𝜆𝑢𝑛  

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 

𝑐
𝜆                                        21  

 

 putting 𝑥 = 𝜆∆𝑡,𝑦 = 𝑐∆𝑡 and𝑟 =
𝑢𝑛+1

𝑢𝑛
  in to the above equation gives; 

𝑟 = 𝑒𝑦 +
𝑥

𝑦
 𝑒𝑦 − 1                              22  

If   

𝑟 = 𝑒𝑦 +
𝑥

𝑦
 𝑒𝑦 − 1 ≤ 1                    23  

then ETD1 is asymptotically stable. 
 

Stability of ETD2 Scheme 
 

Equation (11) can be written in the form; 

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

   𝑐∆𝑡 + 1 𝑒𝑐∆𝑡 − 2𝑐∆𝑡 − 1 𝐹𝑛 +  −𝑒𝑐∆𝑡 + 𝑐∆𝑡 + 1 𝐹𝑛−1 

𝑐2∆𝑡𝑢𝑛
 

Substituting equation (18) in to the above equation gives. 
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𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

   𝑐∆𝑡 + 1 𝑒𝑐∆𝑡 − 2𝑐∆𝑡 − 1 𝜆𝑢𝑛 +  −𝑒𝑐∆𝑡 + 𝑐∆𝑡 + 1 𝐹𝑛−1 

𝑐2∆𝑡𝑢𝑛
          24  

putting 𝑥 = 𝜆∆𝑡,𝑦 = 𝑐∆𝑡 and𝑟 =
𝑢𝑛+1

𝑢𝑛
  in to the above equation gives; 

𝑦2𝑟2 −  𝑦2𝑒𝑦 +   𝑦 + 1 𝑒𝑦 − 2𝑦 − 1 𝑥 𝑟 +  𝑒𝑦 − 𝑦 − 1 𝑥 = 0 

𝑟 = 𝑒𝑦 +  
𝑒𝑦 − 1

𝑦
 𝑥 +  

 𝑒𝑦 − 𝑦 − 1 

𝑦2  𝑥2         25  

If  

𝑟 = 𝑒𝑦 +  
𝑒𝑦 − 1

𝑦
 𝑥 +  

 𝑒𝑦 − 𝑦 − 1 

𝑦2  𝑥2 ≤ 1       26  

then ETD2 is asymptotically stable. Stability of ETD2RK1 Scheme Equation (14) can be written as; 

𝐹  𝑎𝑛 , 𝑡𝑛 + ∆𝑡 𝑐2 ∆𝑡𝑢𝑛
𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 𝐹𝑛
𝑐𝑢𝑛

+  𝑒𝑐∆𝑡 − 𝑐∆𝑡 − 1 
 

Substituting 𝐹𝑛 = 𝜆𝑢𝑛  in to the above equation gives 

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

 𝑒𝑐∆𝑡 − 1 𝜆𝑢𝑛
𝑐𝑢𝑛

+   𝑒𝑐∆𝑡 − 𝑐∆𝑡 − 1 
𝐹 𝑎𝑛 , 𝑡𝑛 + ∆𝑡 

𝑐2∆𝑡𝑢𝑛
        27  

Putting 𝑥 = 𝜆∆𝑡,𝑦 = 𝑐∆𝑡 and𝑟 =
𝑢𝑛+1

𝑢𝑛
  in to the above equation, we get 

𝑟 = 𝑒𝑦 +  𝑒𝑦 − 1 
𝜆𝑢𝑛
𝑐𝑢𝑛

+  
 𝑒𝑦 − 𝑦 − 1  𝑒𝑦 − 1 

𝑦2  𝑥2 

𝑟 = 𝑒𝑦 +  𝑒𝑦 − 1 
𝑥

𝑦
+  

 𝑒𝑦 − 𝑦 − 1  𝑒𝑦 − 1 

𝑦2  𝑥2 

𝑟 = 𝑒𝑦 +  
𝑒𝑦 − 1

𝑦
 𝑥 +  

 𝑒𝑦 − 𝑦 − 1  𝑒𝑦 − 1 

𝑦2  𝑥2      28  

If 

𝑟 = 𝑒𝑦 +  
𝑒𝑦 − 1

𝑦
 𝑥 +  

 𝑒𝑦 − 𝑦 − 1  𝑒𝑦 − 1 

𝑦2  𝑥2 ≤ 1         29  

then ETD2RK2 is asymptotically stable. Stability of ETD2RK2 Scheme Equation (15) can be written as 

𝑢𝑛+1

𝑢𝑛
= 𝑒𝑐∆𝑡 +

   𝑐∆𝑡 − 2 𝑒𝑐∆𝑡 + 𝑐∆𝑡 + 2 𝐹𝑛 + 2 𝑒𝑐∆𝑡 − 𝑐∆𝑡 − 1 𝐹 𝑎𝑛 , 𝑡𝑛 + ∆𝑡 + ∆ 𝑡 2 )     

𝑢𝑛𝑐
2∆𝑡

                     (30) 

 

Let 𝑟 =
𝑢𝑛+1

𝑢𝑛
, 𝑥 = 𝜆∆𝑡 and 𝑦 = 𝑐∆𝑡 

 

𝑟 = 𝑒𝑦 +  
2 𝑒𝑦 − 𝑦 − 1 𝑒𝑦 2 +  𝑦 − 2 𝑒𝑦 + 𝑦 + 2

𝑦2  𝑥 +  
2 𝑒𝑦 − 𝑦 − 1  𝑒𝑦 2 − 1 

𝑦3  𝑥2    (31) 

  

If  

𝑟 = 𝑒𝑦 +  
2 𝑒𝑦−𝑦−1 𝑒𝑦 2 + 𝑦−2 𝑒𝑦+𝑦+2

𝑦2  𝑥 +  
2 𝑒𝑦−𝑦−1  𝑒𝑦 2 −1 

𝑦3  𝑥2 ≤ 1             (32)         

then ETD2RK2 is asymptotically stable. 
 

Results 
 

Computational Results of Stability of ETD Schemes 
 

Du et al (2004), gave the parameter values for 𝑐, 𝜆 and 𝛥𝑡. These values were adopted in this study to compute the 

values of x and y given that 𝑥 = 𝜆𝛥𝑡 ∧ 𝑦 = 𝑐𝛥𝑡. 
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Following the first condition under the stability analysis, where 𝜆 is real and c is fixed, negative and both 𝜆 ∧ 𝑐 are 

purely real; the values of x and y were computed using the adopted values for the parameters 𝑐, 𝜆 ∧ 𝛥𝑡  and 

represented in a tabular form below. 

Table 1: x and y Values Given that c is Fixed and Negative and 𝜆 and c are both Purely Real. 
 

 

∆𝑡 𝑐 𝜆 𝑥 𝑦 

1 × 10−3 −0.1 1 × 10−4 1 × 10−7 −1 × 10−4 

2 × 10−3 −0.1 1 × 10−5 2 × 10−8 −2 × 10−4 

3 × 10−3 −0.1 1 × 10−6 3 × 10−9 −3 × 10−4 

4 × 10−3 −0.1 1 × 10−7 4 × 10−10  −4 × 10−4 

5 × 10−3 −0.1 1 × 10−8 5 × 10−11  −5 × 10−4 

6 × 10−3 −0.1 1 × 10−9 6 × 10−12  −6 × 10−4 

 

It can be observed from Table (1) above that as the values of 𝛥𝑡 and𝜆 increase and c remain constant, values of x 

and y decreases accordingly. Because of the negative values of c, all values obtained for y were also negative. 

From tables (1), the computed values of x and y were used to carry out the computations for the r values for ETDI, 

ETD2, ETD2RK1 and ETD2RK2. Considering the condition that c is fixed and negative and both 𝜆 and c are 

purely real, equations (17), equation (21) and equation (22) computes the r values for ETD1, in a similar way, 

equations (17), equation (24) and equation (25) computes the r values for ETD2, while equations (17), equation 

(27) and equation (28) computes the r values for ETD2RK1. Finally equations (17), equation (30) and equation 

(31) computes the r values for ETD2RK2. Below is a summary of the computed values of r for the schemes. 
 

Table 2: The r Values of the Schemes when Parameter c is Fixed and Negative and 𝜆 is Complex 
 

 𝑟 𝑉𝐴𝐿𝑈𝐸𝑆𝑂𝐹𝑆𝐶𝐻𝐸𝑀𝐸𝑆 

𝐸𝑇𝐷1 𝐸𝑇𝐷2 𝐸𝑇𝐷2𝑅𝐾1 𝐸𝑇𝐷2𝑅𝐾2 

0.9999 0.9999 0.9999 0.9999 

0.9998 0.9998 0.9998 0.9998 

0.9997 0.9997 0.9997 0.9997 

0.9996 0.9996 0.9996 0.9996 

0.9995 0.9995 0.9995 0.9995 

0.9994 0.9994 0.9994 0.9994 
 

From Table (2), all values corresponding to the ETD and ETDRK schemes are less than one indicating that all 

schemes are asymptotically stable at these points studied. It can also be observed that at each 𝛥𝑡  all schemes have 

the same values and this is true for all values of 𝛥𝑡 . Hence none of the schemes can be said to be more 

asymptotically stable than the other. Again descending down the table, the values of r corresponding to the 

schemes decreases, hence making the schemes more stable. Considering the second condition under the stability 

analysis, where c is changing and negative and both 𝜆 ∧ 𝑐 are purely real; the values of x and y were computed 

using the adopted values for the parameters 𝑐, 𝜆 ∧ 𝛥𝑡 and represented in a tabular below. 

Table 3: x and y Values Given c is changing and Negative and 𝜆 and c are Real 
 

∆𝑡 𝑐 𝜆 𝑥 𝑦 

1 × 10−3 −0.1 1 × 10−4 1 × 10−7 −1 × 10−4 

2 × 10−3 −0.2 1 × 10−5 2 × 10−8 −4 × 10−4 

3 × 10−3 −0.3 1 × 10−6 3 × 10−9 −9 × 10−4 

4 × 10−3 −0.4 1 × 10−7 4 × 10−10 −1.6 × 10−3 

5 × 10−3 −0.5 1 × 10−8 5 × 10−11 −2.5 × 10−3 

6 × 10−3 −0.6 1 × 10−9 6 × 10−12 −3.6 × 10−3 
 

Values from Table (3) show that given the condition that c is changing and negative and both 𝑐 ∧ 𝜆 are real, 

values of x and y decrease as 𝛥𝑡 increases. Considering the condition that c is changing and negative and both 𝜆 

and c are purely real, equations (17), equation (21) and equation (22) computes the r values for ETD1, in a similar 

way, equations (17), equation (24) and equation (25) computes the r values for ETD2, while equations (17), 

equation (27) and equation (28) computes the r values for ETD2RK1. Finally equations (17), (30) and (31) 

computes the r values for ETD2RK2. Below is a summary of the computed values of r for the schemes. 
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Table 4.0: The r Values of the Schemes when Parameter c is changing and Negative and 𝜆 is Complex. 
 

 𝑟 𝑉𝐴𝐿𝑈𝐸𝑆𝑂𝐹𝑆𝐶𝐻𝐸𝑀𝐸𝑆 

𝐸𝑇𝐷1 𝐸𝑇𝐷2 𝐸𝑇𝐷2𝑅𝐾1 𝐸𝑇𝐷2𝑅𝐾2 

0.9999 0.9999 0.9999 0.9999 

0.9996 0.9996 0.9996 0.9996 

0.9991 0.9991 0.9991 0.9991 

0.9980401 0.9980401 0.9980401 0.9980401 

0.997503 0.997503 0.997503 0.997503 

0.996406 0.996406 0.996406 0.996406 
 

Again in Table (4), all values corresponding to ETD and ETDRK schemes are less than one, indicating that all 

schemes are asymptotically stable at these points. It can also be observed that at each 𝛥𝑡 all the schemes have the 

same values suggesting that none of the schemes studied is better in terms of asymptotic stability than the other. 

Descending down the table, the r values of the schemes are decreasing, hence suggesting that the schemes are 

becoming more asymptotically stable. 
 

Discussion 
 

From Table (1), given that 1 × 10−3 ≤ 𝛥𝑡 ≤ 6 × 10−3, c is fixed and negative and 𝜆 is complex, results obtained 

for 𝑥 = 𝜆∆𝑡 and 𝑦 = 𝑐𝛥𝑡 showed that both values of x and y increased for every increase in 𝛥𝑡, however all 

values of y were negative. In Table (2), if c is changing and negative and 𝜆 is real, the values of 𝑥 remained the 

same while y values were found to be changing. From Table (3), all values corresponding to the various ETD and 

ETDRK schemes are less than one indicating that all schemes are asymptotically stable at these points studied. It 

can also be observed that at each 𝛥𝑡  all schemes have the same values and this is true for all values of 𝛥𝑡. Hence 

none of the schemes can be said to be more asymptotically stable than the order. Again descending down the 

table, the values of r corresponding to the schemes decreases, hence making the schemes more stable. Again in 

Table (4), all values corresponding to ETD and ETDRK schemes are less than one, indicating that all schemes are 

asymptotically stable at these points. It can also be observed that at each 𝛥𝑡 all the schemes have the same values 

suggesting that none of the schemes studied is better in terms of asymptotic stability than the other. Descending 

down the table, the r values of the schemes are decreasing, hence suggesting that the schemes are becoming more 

asymptotically stable. 
 

Conclusion 
 

This research suggest that the comparison of the asymptotic stability of ETD1, ETD2, ETD2RK1 and ETD2RK2 

schemes in solving the stiff semi-linear differential equation (17) was properly executed. This was made possible 

when some parameters 𝑐, 𝜆 ∧ 𝛥𝑡 were adopted and used for computations. To ensure that the first objective was 

met, ETD1, ETD2, ETD2RK1 and ETD2RK2 schemes were used to solve the stiff semi-linear differential 

equation (17) to obtain the asymptotic stability expressions; equation (23), equation (24), equation (29) and 

equation (32). The second objective suggested the following conclusions; When the parameter c is negative and 

changing, and 𝜆 is complex, all the schemes are asymptotically stable, however as ∆𝑡 increases and the parameter 

c is changing, the corresponding  𝑟  values of the schemes decreases accordingly making them more 

asymptotically stable. When the parameter c is negative and fixed and 𝜆 is complex and both are real, all the 

schemes studied are asymptotically stable, however as ∆𝑡 increases, corresponding  𝑟  values of the schemes 

decreases accordingly making them more stable.  
 

 At each ∆𝑡, the  𝑟  values of all the schemes are the same, that is; at ∆𝑡 = 0.001,  𝑟  value of ETD1 is 0.9999, 

ETD2 is 0.9999, ETD2RK1 is 0.9999 and ETD2RK2 is 0.9999. Hence as far as asymptotic stability is concern, 

none of the schemes studied is more stable than the other, therefore ETD1, ETD2, ETD2RK and ETD2RK2 are 

efficient schemes for solving stiff semi-linear differential equations. 

 It will take several ∆𝑡 values to make the schemes more stable when c is fixed and negative and 𝜆 is complex 

than when c is changing and negative and 𝜆 is complex. 
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