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Abstract 
 

This paper introduces a new direction to approximately solving a class of multi between Riemann-Liouville 

fractional derivative of 𝜐 ∈  (0,1),  and the composition of the Caputo fractional derivative of   𝛼, 𝛽 ∈  (0,1) 

with the control variable  𝑢(𝑡).In this technique; we approximate FOCPs with boundary conditions. The method 

is based on a spectral method using Chebyshev polynomials approximation and Clenshaw and Curtis scheme for 

the numerical integration of non-singular functions to evaluate both the state and control variables. Illustrative 

examples are included to demonstrate the validity and applicability of the suggested approaches. 
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1.Introduction 
 

Fractional differential equations have been the focus of many studies due to their frequent appearance in various 

applications in fluid mechanics, biology, physics and engineering [7].Most FDEs do not have exact analytical 

solutions, so approximate and numerical techniques [12, 16, 20] must be used. Several numerical methods to 

solve FDEs have been given. Some numerical methods for solving fractional differential equations (FDEs) were 

appeared in [15], [19].The general definition of an optimal control problems requires minimization of a criterion 

function of the states and control inputs of the system over a set of admissible control functions. The system is 

subject to constrained dynamics and control variables. A general formulation and a solution scheme for FOCPs 

were first introduced in [2] where fractional derivatives were introduced in the Riemann-Liouville sense, and 

FOCP formulation was expressed using the fractional variational principle and the Lagrange multiplier technique. 

In [1], the fractional derivatives (FDs) of the system are approximated using the Grunwald-Letnikov definition, 

providing a set of algebraic equations that can be solved using numerical techniques. The problem is defined in 

terms of the Caputo fractional derivatives in [3] and an iterative numerical scheme is introduced to solve the 

problem numerically. Distributed systems are considered in [4] and eigenfunction decomposition is used to solve 

the problem. Ozdemir et al. [18] also use eigenfunction expansion approach to formulate an FOCP of a 2-

dimensional distributed system. Cylindrical coordinates for the distributed system are considered in [17].     
 

A modified Grunwald-Letnikov approach is introduced in [9] which lead to a central difference scheme. Frederico 

and Torres [13], [14], using similar definitions of the FOCPs, formulated a Noether-type theorem in the general 

context of the fractional optimal control in the sense of Caputo and studied fractional conservation laws in 

FOCPs. In [22], a rational approximation of the fractional derivatives operator is used to link FOCPs and the 

traditional integer order optimal controls (IOOCs). In [5], Akbarian and Keyanpour studied a new approach to the 

numerical solution of fractional order optimal control Problems. In [21], Sweilam, T.M.Al-Ajmi and R.H.W.  
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Hoppe studied numerical solution of some types of fractional optimal control problems. In this article, we 

introduce a formulation to a special class of FOCP: the multi-Fractional we study between Riemann-Liouville 

fractional derivative and the composition of the Caputo fractional derivative with the control variable 𝑢(𝑡), and 

boundary conditions. We find approximate solution by the spectral method. The suggested method is more 

accurate to approximation the state and control variables. This paper is structured as follows. In Section 2, some 

basic definitions and properties of fractional order calculus (R-L and Caputo fractional derivatives).In 

Section 3, the shifted Chebyshev polynomials are introduced and numerical approximations of CFD and RLFD 

using Chebyshev polynomials. In Section 4, we derive the necessary optimality conditions Composition order 

fractional optimal control problems. In Section 5, we give numerical examples to solve Class of Riemann-

Liouville derivative-composition fractional order optimal control problems. The conclusions are given in   Section 

6. 
 

2.Basic definitions and properties. 
 

In this section, we briefly give some definitions and properties regarding fractional derivatives allowing us to 

formulate a general definition of an FOCP. There are different definitions of the fractional derivative operator [2].  

Definition (2.1): 

i. The Left Riemann-Liouville Fractional Derivative (LRLFD) of a function 𝑓 𝜏  is defined as 

𝐷𝑡
𝛼

𝑎 𝑓 𝑡 =
1

Г 𝑛−𝛼 

𝑑𝑛

𝑑𝑡 𝑛   𝑡 − 𝜏 𝑛−𝛼−1 𝑓 𝜏 𝑑𝜏,                    𝑡 > 𝑎
𝑡

𝑎
                                                              (1) 

where the order of the derivative 𝛼 satisfies 𝑛 − 1 < 𝛼 < 𝑛. 

ii. The Right Riemann-Liouville Fractional Derivative (RRLFD) of a function 𝑓 𝜏  is defined as 

𝐷𝑏
𝛼

𝑡 𝑓 𝑡 =
1

Г 𝑛−𝛼 
(−1)𝑛 𝑑𝑛

𝑑𝑡 𝑛  (𝜏 − 𝑡)𝑛−𝛼−1 𝑓 𝜏 𝑑𝜏,
𝑏

𝑡
       𝑡 < 𝑏.                                                             (2) 

Definition (2.2): 

i.        The Left Caputo Fractional Derivative (LCFD) of a function 𝑓 𝜏  is defined as  

𝐷𝑡
𝛼

𝑎
𝐶 𝑓 𝑡 =

1

Г 𝑛−𝛼 
  𝑡 − 𝜏 𝑛−𝛼−1𝑓 𝑛  𝜏 𝑑𝜏.   

𝑡

𝑎
                                                                                         (3) 

ii.        The Right Caputo Fractional Derivative (RCFD) of a function 𝑓 𝜏  is defined as 

𝐷𝑏
𝛼

𝑡
𝐶 𝑓 𝑡 =

 −1 𝑛

Г 𝑛−𝛼 
  𝜏 − 𝑡 𝑛−𝛼−1𝑓 𝑛  𝜏 𝑑𝜏,

𝑏

𝑡
                                                                                           (4) 

where ∈ Ν. 
 

Some properties of the fractional calculus are presented in details which will be needed later on: 
  

i) The Caputo’s derivatives are linear,[8]: 

𝐷𝑡
𝛼

𝑎
𝐶  𝜆𝑓 𝑡 + 𝜇𝑔 𝑡  = 𝜆 𝐷𝑡

𝛼
𝑎
𝐶 𝑓 𝑡 + 𝜇 𝐷𝑡

𝛼
𝑎
𝐶 𝑔 𝑡 , 

    where  𝜆, 𝜇 are real numbers. 

ii) Let 0 < 𝛼 < 1, 𝑛 − 1 < 𝛼 + 𝛽 < 𝑛 , 𝑛 − 1 < 𝛽 < 𝑛, 𝑛 is a positive integer, 𝑓 ∈ 𝐶𝑛  𝑎, 𝑡 ,  and if 

𝑥(𝑖) 0 = 0 , 𝑖 = 0, 1, ……𝑛 − 1.) 

Then one has 𝐷𝑡
𝛼

𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  = 𝐷𝑡

𝛽
𝑎
𝐶  𝐷𝑡

𝛼
𝑎
𝐶 𝑥 𝑡  = 𝐷𝑡

𝛼+𝛽
𝑎
𝐶 𝑥 𝑡 .                                                              (5) 

iii) 𝐷𝑏
𝛼

𝑡  𝐷𝑏
𝛽
𝑥 𝑡 𝑡  = 𝐷𝑏

𝛼+𝛽
𝑡 𝑥 𝑡 −   𝐷𝑏

𝛽−𝑘
𝑥 𝑡 𝑡  

𝑡=𝑏

𝑚
𝑘=1

 𝑏−𝑡 −𝛼−𝑘

Г 1−𝛼−𝑘 
, 

If  𝛼 > 0 and 𝛽 > 0 be such that  𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑚 − 1 < 𝛽 ≤ 𝑚 , 

    when    𝑛 = 𝑚 = 1,  then        0 < 𝛼 ≤ 1, 0 < 𝛽 ≤ 1 . 

𝐷𝑏
𝛼

𝑡  𝐷𝑏
𝛽
𝑥 𝑡 𝑡  = 𝐷𝑏

𝛼+𝛽
𝑡 𝑥 𝑡 −  𝐷𝑏

𝛽−1
𝑥 𝑡 𝑡  

𝑡=𝑏

 𝑏−𝑡 −𝛼−1

Г −𝛼 
.                                                                 (6) 

iv)    If , 0 < 𝛼 < 1, we obtain,[19]  



International Journal of Applied Science and Technology            Vol. 8, No. 2, June 2018       doi:10.30845/ijast.v8n2p5 

 

38 

 𝑔 𝑡 · 𝐷𝑡
𝛼

𝑎
 𝐶 𝑓 𝑡 𝑑𝑡

𝑏

𝑎
=  𝑓 𝑡 · 𝐷𝑏

𝛼
𝑡 𝑔 𝑡 

𝑏

𝑎
𝑑𝑡 +   𝑡𝐼𝑏

1−𝛼𝑔(𝑡) · 𝑓(𝑡) 
𝑎

𝑏
  

 𝑔 𝑡 · 𝐷𝑏
𝛼

𝑡
𝐶 𝑓 𝑡 𝑑𝑡

𝑏

𝑎
=  𝑓 𝑡 · 𝐷𝑡

𝛼
𝑎 𝑔 𝑡 

𝑏

𝑎
𝑑𝑡 +   𝑎𝐼𝑡

1−𝛼𝑔(𝑡) · 𝑓(𝑡) 𝑎
𝑏 . 

Moreover,     

If  𝑓 is a function such that 𝑓 𝑎 = 𝑓 𝑏 = 0, we have simpler formulas: 

 𝑔 𝑡 · 𝐷𝑡
𝛼

𝑎
 𝐶 𝑓 𝑡 𝑑𝑡

𝑏

𝑎
=  𝑓 𝑡 · 𝐷𝑏

𝛼
𝑡 𝑔 𝑡 

𝑏

𝑎
𝑑𝑡,                                                                                          (7)                                  

 𝑔 𝑡 · 𝐷𝑏
𝛼

𝑡
𝐶 𝑓 𝑡 𝑑𝑡

𝑏

𝑎
=  𝑓 𝑡 · 𝑎𝐷𝑡

𝛼𝑔 𝑡 
𝑏

𝑎
𝑑𝑡.                                                                                       (8) 

v) The relation between the RLFD  and the CFD,[6]: 

For  𝛼 > 0  and 𝑛 =  𝛼 + 1, the Riemann-Liouville and Caputo fractional derivatives are related by the 

following formulas: 

𝐷𝑡
𝛼

𝑎 𝑓 𝑡 = 𝐷𝑡
𝛼

𝑎
𝐶 𝑓 𝑡 +  

𝑓 𝑘  𝑎 

Г 𝑘+1−𝛼 
(𝑡 − 𝑎)𝑘−𝛼𝑛−1

𝑘=0 ,                                                                                   (9)                                        

              𝐷𝑏
𝛼

𝑡 𝑓 𝑡 = 𝐷𝑏
𝛼

𝑡
𝐶 𝑓 𝑡 +  

𝑓 𝑘  𝑏 

Г 𝑘+1−𝛼 
 𝑏 − 𝑡 𝑘−𝛼𝑛−1

𝑘=0 .                                                                                 (10) 

vi) The constant function and  power function of  the Caputo’s derivative ,is: 

 𝐷𝑡
𝛼

𝑎
𝐶 𝐶 = 0,        where  𝐶 is a constant,                                                                                                     (11)                                                                    

    𝐷𝑡
𝛼

𝑎
𝐶  𝑡 − 𝑎 𝛽 =  

0,                                   𝑓𝑜𝑟     𝛽 ∈ 𝑁0    𝑎𝑛𝑑  𝛽 <  𝛼 ,
Г 𝛽+1 

Г 𝛽−𝛼+1 
 𝑡 − 𝑎 𝛽−𝛼 ,   𝑓𝑜𝑟   𝛽 ∈ 𝑁0    𝑎𝑛𝑑 𝛽 ≥   𝛼 ,

                                                    (12)     

we use 𝛼  to denote the smallest integer greater than or equal to 𝛼 and𝑁0 =  {0, 1, 2, . . . } Recall that 

for 𝛼 ∈ 𝑁,[5]. 
 

3.The definition and properties of the shifted Chebyshev polynomials 
 

The well-known Chebyshev polynomials are defined on the interval  −1,1  and can be determined by the 

followingrecurrence formula [11]: 

𝑇𝑛 𝑡 = 2𝑡𝑇𝑛−1 𝑡 − 𝑇𝑛−2 𝑡 ,           𝑛 = 2,3 … . 

The Chebyshev polynomials can be expanded in power series as, [5]: 

𝑇𝑛 𝑡 =
𝑛

2
  −1 𝑚  𝑛−𝑚−1 !

 𝑚 ! 𝑛−2𝑚 !
(2𝑡)𝑛−2𝑚 𝑛/2 

𝑚=0 ,                                                                                                      (13) 

where  𝑛/2  denotes the integral part of  𝑛/2,  with 𝑇0 𝑡 = 1,   𝑇1 𝑡 = 𝑡. 

The Chebyshev polynomials 𝑇𝑛 𝑡     (𝑛 = 0, 1, 2, … ) are orthogonal under integration over   −1,1   with the 

weighting function  𝑤 𝑡 = 1/ 1 − 𝑡2 ,  with orthogonally condition: 

 
𝑇𝑛  𝑡 𝑇𝑚  𝑡 

 1−𝑡2

1

−1
𝑑𝑡 =  

 0      if            𝑛 ≠ 𝑚,           
𝜋

2
     if            𝑛 = 𝑚 ∈ 𝑁,

𝜋     if            𝑛 = 𝑚 = 0.

                                                                                                     (14) 

In order to use these polynomials on the interval 0, 𝐿  we define the so called shiftedpseudo-spectral Chebyshev 

polynomials by introducing the change of variable     𝑧 =
2𝑡

𝐿
− 1. 

The shifted Chebyshev polynomials are defined as,[6]: 

𝑇𝑛
𝑝 𝑡 = 𝑇𝑛  

2𝑡

𝐿
− 1 ,      where           𝑇0

𝑝 𝑡 = 1, 𝑇1
𝑝 𝑡 =

2𝑡

𝐿
− 1.                                                                       (15) 

The analytic form of the shifted pseudo-spectral Chebyshev polynomial 𝑇𝑛
𝑝 𝑡  of degree n is given by, [2]: 

𝑇𝑛
𝑝 𝑡 = 𝑛   −1 𝑛−𝑘 22𝑘 𝑛+𝑘−1 !

 2𝑘 ! 𝑛−𝑘 !𝐿𝑘 𝑡𝑘𝑛
𝑘=0 ,        𝑛 = 1,2 …,                                                                                    (16) 

Where, 𝑇𝑛
𝑝 0 = (−1)𝑛 ,  and  𝑇𝑛

𝑝 𝐿 = 1. 

Let the shifted Chebyshev polynomials 𝑇𝑛  
2𝑡

𝐿
− 1 be denoted by𝑇𝑛

𝑝 𝑡 , satisfying the orthogonality relation:  
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 𝑇𝑛
𝑝 𝑡 𝑇𝑚

𝑝  𝑡 𝑤𝑝 𝑡 
𝐿

0
𝑑𝑡 = δ𝑚,                                                                                                                              (17) 

with the weight function  𝑤𝑝 𝑡 =
1

 𝐿𝑡−𝑡2
, δ𝑚 =

𝑏𝑘

2
𝜋, 𝑏0 = 2, 𝑏𝑘 = 1 for 𝑘 ≥ 1. 

A function 𝑥 𝑡 ∈ 𝐿2  0, 𝐿  𝑖. 𝑒. (square integrable in 0, 𝐿 ) can be expressed in terms of shifted Chebyshev 

polynomials as: 

𝑥 𝑡 =  𝑐𝑛𝑇𝑛
𝑝 𝑡 

∞

𝑗 =0

, 

where the coefficients 𝑐𝑛  are given by  

𝑐𝑛 =
1

δ𝑛
 𝑥 𝑡 𝑇𝑛

𝑝 𝑡 𝑤𝑝 𝑡 
𝐿

0

𝑑𝑡,    𝑛 = 0,1, …     

3.1.   The Chebyshev-Gauss Lobatto points. 

We choose the Chebyshev-Gauss Lobatto points associated with the interval  0, 𝐿 ,    

                                     𝑡𝑟 =
𝐿

2
−

𝐿

2
cos(

𝜋𝑟

𝑁
), 𝑟 = 0, 1, …  𝑁.                                                                                     (18) 

These grids can be written as     𝐿 < 𝑥𝑁 < 𝑥𝑁−1 … < 𝑥1 < 𝑥0 = 0. 

Clenshaw and Curtis [5], introduced an approximation of the function𝑥 𝑡 , as follows 

                                   𝑥𝑁 𝑡 =  𝑎𝑛  𝑇𝑛
𝑝 𝑡 ,𝑁      ′′

𝑛=0 𝑎𝑛  =
2

𝑁
 𝑥(𝑡𝑟)𝑇𝑛

𝑝 𝑡𝑟 
𝑁      ′′
𝑟=0 .                                                      (19)          

where the  ′′  on the summation means that the first and last terms are to be taken with a factor  1/2 . 

Theorem (3.1.1), [6]: 

The fractional derivative of order 𝛼in the Caputo sense for thefunction 𝑥 𝑡  at the point 𝑡𝑠 is given by 

𝐷𝑡
𝛼

0
𝐶 𝑥𝑁 𝑡𝑠 =  𝑑𝑠,𝑟

 𝛼 𝑁
𝑟=0 𝑥 𝑡𝑟 ,               𝛼 > 0,                                                                                                      (20) 

 

Such that  

𝑑𝑠,𝑟
 𝛼 

=
4𝜃𝑟

𝑁
   

𝑛𝜃𝑛

𝑏𝑗

𝑛
𝑘= 𝛼 

𝑁
𝑗 =0

𝑁
𝑛= 𝛼 

 −1 𝑛−𝑘 𝑛+𝑘−1 ! Г 𝑘−𝛼+
1

2
 𝑇𝑛

𝑝  𝑡𝑟   𝑇𝑗
𝑝  𝑡𝑠 

𝐿𝛼  Г 𝑘+
1

2
  𝑛−𝑘 ! Г 𝑘−𝛼−𝑗+1  Г 𝑘−𝛼+𝑗+1 

,                                                            (21) 

 where                                                           

𝑠, 𝑟 = 0, 1,2, … , 𝑁  with   𝜃0 = 𝜃𝑁 =
1

2
, 𝜃𝑖 = 1 ∀  𝑖 = 1, 2, … , 𝑁 − 1. 

Theorem (3.1.2), [6]: 

Let 𝐷𝑡
𝛼

0
𝐶 𝑥𝑁 𝑡  be the approximation of the fractional derivative 𝐷𝑡

𝛼
0
𝐶 of the function 𝑥(𝑡)as given by (20). Then it 

holds 

  𝐷𝑡
𝛼

0
𝐶 𝑥(𝑡) − 𝐷𝑡

𝛼
0
𝐶 𝑥𝑁 𝑡   

2
≤  𝑎𝑛  Ω𝑛  

𝐹 𝑡𝑘−𝛼 ;𝑇0
𝑝

,…,𝑇𝑁
𝑝
 

𝐹 𝑇0
𝑝

,…,𝑇𝑁
𝑝
 

 

1

2𝑁  ′′  
𝑛=0  ,                                                                               (22) 

where  

Ω𝑛 =  
 −1 𝑛−𝑘  2𝑛 𝑛+𝑘−1 ! Г 𝑘−𝛼+

1

2
 

𝑏𝑗  𝐿
𝛼  Г 𝑘+

1

2
  𝑛−𝑘 ! Г 𝑘−𝛼−𝑗+1  Г 𝑘−𝛼+𝑗+1 

𝑛
𝑘= 𝛼  ,                                                                                          (23) 

 

𝐹 𝑥; 𝑦1 , 𝑦2 , …𝑦𝑛 =  

 𝑥, 𝑥  𝑥, 𝑦1 ⋯  𝑥, 𝑦𝑛  

 𝑦1 , 𝑥  𝑦1 , 𝑦1 ⋯  𝑦1 , 𝑦𝑛  
⋮ ⋮ ⋱ ⋮

⟨𝑦𝑛 ;  𝑥⟩ ⟨𝑦𝑛 ;  𝑦1⟩ ⋯ ⟨𝑦𝑛 ;  𝑦𝑛 ⟩

 .                                                                                     (24) 
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3.2. Approximation of the right Riemann-Liouville fractional derivative. 

Using right Caputo fractional derivative (RCFD) of a function 𝑓 𝜏  is defined in (4) when  

0 < 𝛼 < 1 and 𝑓 𝑡 ∈ 𝐴С  𝑎, 𝑏 , 

𝐷𝑏
𝛼

𝑠
𝑐 𝑓 𝑠 =

−1

Г 1−𝛼 
  𝑡 − 𝑠 −𝛼𝑓 ′ 𝑡 𝑑𝑡

𝑏

𝑠
,                                                                                                                 (25)  

and from (10), when  0 < 𝛼 < 1, (that is   𝑛 = 1) we have 

𝑠𝐷𝑏
𝛼𝑓 𝑠 =

𝑓 𝑏 

Г 1−𝛼 
 𝑏 − 𝑠 −𝛼 + 𝐷𝑏

𝛼
𝑠
𝑐 𝑓 𝑠 ,                                                                                                          (26)   

Use (25)   in (26) to obtain: 

𝑠𝐷𝑏
𝛼𝑓 𝑠 =

𝑓 𝑏 

Г 1−𝛼 
 𝑏 − 𝑠 −𝛼 +

1

Г 1−𝛼 
  𝑡 − 𝑠 −𝛼𝑓 ′ 𝑡 𝑑𝑡

𝑏

𝑠
                                                                              (27)   

 Let  𝑓 be a sufficiently smooth function in  0, 𝑏  and let  𝐽(𝑠; 𝑓) be defined as follows          

𝐽 𝑠; 𝑓 =   𝑡 − 𝑠 −𝛼𝑓 ′ 𝑡 𝑑𝑡,
𝑏

𝑠
0 < 𝑠 < 𝑏.                                                                                                            (28)   

Substitution (28) in (27) we deduce  

𝑠𝐷𝑏
𝛼𝑓 𝑠 =

𝑓 𝑏 

Г 1−𝛼 
 𝑏 − 𝑠 −𝛼 +

𝐽  𝑠;𝑓 

Г 1−𝛼 
 .                                                                                                             (29)   

Now, we approximate 𝑓 𝑡 , 0 ≤ 𝑡 ≤ 𝑏, by a sum of shifted Chebyshev polynomials 

𝑇𝑘(
2𝑡

𝑏
− 1) according to  

𝑓 𝑡 ≈ 𝑝𝑁 𝑡 =  𝑎𝑘  𝑇𝑘(
2𝑡

𝑏
− 1)𝑁   ′′

𝑘=0 , 𝑎𝑘  =
2

𝑁
 𝑓(𝑡𝑗 )𝑇𝑘(

2𝑡𝑗

𝑏
− 1)𝑁   ′′

𝑗=0 ,                                                                  (30)   

where 

𝑡𝑗 =
𝑏

2
−

𝑏

2
cos  

𝜋𝑗

𝑁
 , 𝑗 = 0, …… , 𝑁, and obtain    

𝐽 𝑠; 𝑓 ≈ 𝐽 𝑠; 𝑝𝑁 =  𝑝𝑁
′ 𝑡  𝑡 − 𝑠 −𝛼𝑑𝑡.

𝑏

𝑠
                                                                                                          (31)   

Lemma (3.2.1), [6]: 

Let  𝑝𝑁  be the polynomial of degree  𝑁 as given by (30), Then there exists a polynomial 𝐹𝑁−1 of degree 𝑁 − 1 

such that  

  𝑝𝑁
′ 𝑡 − 𝑝𝑁

′ 𝑠   𝑡 − 𝑠 −𝛼𝑑𝑡 =  𝐹𝑁−1 𝑥 − 𝐹𝑁−1(𝑠) 
𝑥

𝑠
 𝑥 − 𝑠 1−𝛼 .                                                                (32) 

Proof: 

 Let  𝑝𝑁
′ 𝑡 − 𝑝𝑁

′ 𝑠  be expanded in a Taylor series at  𝑡 = 𝑠 

𝑝𝑁
′ 𝑡 − 𝑝𝑁

′ 𝑠 =  𝐴𝑘 𝑠  𝑡 − 𝑠 𝑘𝑁−1
𝑘=1 .  

Then,  

  𝑝𝑁
′ 𝑡 − 𝑝𝑁

′ 𝑠   𝑡 − 𝑠 −𝛼𝑑𝑡 =  𝐴𝑘 𝑠   𝑡 − 𝑠 𝑘−𝛼

𝑥

𝑠

𝑁−1

𝑘=1

𝑥

𝑠

𝑑𝑡 

                                                                                    =   𝑡 − 𝑠 1−𝛼  
𝐴𝑘 𝑠  𝑡−𝑠 𝑘

𝑘−𝛼+1
𝑁−1
𝑘=1  

𝑠

𝑥

. 

The assertion follows, if we choose 𝐹𝑁−1 𝑥 =  
𝐴𝑘 𝑠  𝑥−𝑠 𝑘

𝑘−𝛼+1
𝑁−1
𝑘=0 ,with an arbitrary constant 𝐴0 𝑠 . 

In view of (32) we have  

𝐽 𝑠; 𝑝𝑁 =  𝑝𝑁
′ 𝑡  𝑡 − 𝑠 −𝛼𝑑𝑡 =  

𝑝𝑁
′ 𝑠 

1−𝛼
+  𝐹𝑁−1 𝑏 − 𝐹𝑁−1(𝑠)   𝑏 − 𝑠 1−𝛼𝑏

𝑠
                                               (33) 

Moreover,  𝑠𝐷𝑏
𝛼𝑓 𝑠  can be approximated by means of  

𝑠𝐷𝑏
𝛼𝑓 𝑠 ≈

𝑓 𝑏 

Г 1−𝛼 
 𝑏 − 𝑠 −𝛼 +

𝐽 𝑠;𝑝𝑁  

Г 1−𝛼 
 .                                                                           (34)        

We express 𝐹𝑁−1 𝑡  in (33) by a sum of Chebyshev polynomials and provide the recurrence relation satisfied by 

the Chebyshev coefficients. Differentiating both sided of (32) with respect to 𝑥 yields  
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 𝑝𝑁
′ 𝑥 − 𝑝𝑁

′ 𝑠   𝑥 − 𝑠 −𝛼 = 

𝐹𝑁−1
′ 𝑥  𝑥 − 𝑠 1−𝛼 +  𝐹𝑁−1 𝑥 − 𝐹𝑁−1 𝑠   1 − 𝛼  𝑥 − 𝑠 −𝛼 , 

when  

𝑝𝑁
′ 𝑥 − 𝑝𝑁

′ 𝑠 = 𝐹𝑁−1
′ 𝑥  𝑥 − 𝑠 +  𝐹𝑁−1 𝑥 − 𝐹𝑁−1 𝑠   1 − 𝛼 .                                                                (35) 

To evaluate 𝐹𝑁−1 𝑠  in (33), we expand 𝐹𝑁−1
′ 𝑥  in terms of the shifted chebyshev polynomials                  

𝐹𝑁−1
′ 𝑥 =  𝑏𝑘𝑇𝑘  

2𝑥

𝑏
− 1 ,𝑁−2   ′

𝑘=0 0 ≤ 𝑥 ≤ 𝑏,                                                                                                     (36) 

where the  ′  on the summation means that the first term is to be taken with a factor  1/2 . 

𝐹𝑁−1 𝑥 − 𝐹𝑁−1 𝑠 =
𝑏

4
 

 𝑏𝑘−1− 𝑏𝑘+1

𝑘
 𝑇𝑘  

2𝑥

𝑏
− 1 − 𝑇𝑘  

2𝑠

𝑏
− 1  ,𝑁−1

𝑘=1                                                               (37) 

where  𝑏𝑁−1 =  𝑏𝑁 = 0. On the other hand , we have  

 𝑥 − 𝑠 𝐹𝑁−1
′ 𝑥 =

𝑏

2
𝐹𝑁−1

′ 𝑥   
2𝑥

𝑏
− 1 −  

2𝑠

𝑏
− 1  . 

By using the relation 𝑇𝑘+1 𝑣 + 𝑇𝑘−1 𝑣 = 2𝑣𝑇𝑘 𝑣  and from (36), it follows that  

 𝑥 − 𝑠 𝐹𝑁−1
′ 𝑥 =

𝑏

4
   𝑏𝑘+1 − 2  

2𝑠

𝑏
− 1  𝑏𝑘 +  𝑏𝑘−1 𝑇𝑘  

2𝑥

𝑏
− 1 ,𝑁−1  ′

𝑘=1                                                        (38)       

Such that   𝑏−1 =  𝑏1. 

Let 𝑝𝑁
′ 𝑥 =  𝑐𝑘𝑇𝑘  

2𝑥

𝑏
− 1 .𝑁−1   ′

𝑘=0                                                                                                                      (39) 

Inserting  𝐹𝑁−1 𝑥 − 𝐹𝑁−1 𝑠  and  𝑥 − 𝑠 𝐹𝑁−1
′ 𝑥  as given (37) and (38) into (35) and taking (39) into account, 

we get  

 1 −
1−𝛼

𝑘
  𝑏𝑘+1 − 2  

2𝑠

𝑏
− 1  𝑏𝑘 +  1 +

1−𝛼

𝑘
  𝑏𝑘−1 =

4

𝑏
𝑐𝑘 ,    1 ≤ 𝑘.                                                                 (40) 

The Chebyshev coefficients  𝑐𝑘  of 𝑝𝑁
′ 𝑥  as given by (39) can be evaluated by integrating and comparing it   with 

equation (30): 

𝑐𝑘−1 = 𝑐𝑘+1 +
4𝑘

𝑏
𝑎𝑘 , 𝑘 = 𝑁, 𝑁 − 1, … ,1,                                                                                                              (41) 

with starting values  𝑐𝑁 = 𝑐𝑁+1 = 0, where 𝑎𝑘  are the Chebyshev coefficients of 𝑝𝑁 𝑥 . 

 

4. The necessary optimality conditions of Riemann-Liouville  Derivative-Composition  Fractional Order 

Optimal Control Problems: 

 

𝑴𝒂𝑫𝒕
𝝊𝒙 𝒕 + 𝑵 𝑫𝒕

𝜶
𝒂
𝑪  𝑫𝒕

𝜷
𝒂
𝑪 𝒙 𝒕  = 𝒇 𝒕, 𝒙 𝒕 , 𝒖 𝒕  , 

 

      In this type, we introduce the system of the type multi of the Riemann-Liouville fractional derivative of  

υ ∈  0,1 ,  and the composition of the Caputo fractional derivative of 𝛼, 𝛽 ∈  0,1  with the control variable 𝑢(𝑡). 

The necessary optimality conditions of this type introduce as follows: 

Let  𝑓0, 𝑓:  𝑎,∞ × ℝ2 → ℝ be two differentiable functions, and let υ, 𝛼 and 𝛽 be real numbers and υ, 𝛼 and 𝛽 ∈

 0,1 . We consider a general multi-order Fractional Optimal Control Problem:   

 

                                   minimize J 𝑥, 𝑢, 𝑇 =  𝑓0 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡
𝑇

𝑎
,                                                                     (42) 

       subject to the RLD-composition fractional dynamical system  

 

                     𝑀𝑎𝐷𝑡
𝜐𝑥 𝑡 + 𝑁 𝐷𝑡

𝛼
𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  = 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  ,                                                                    (43) 

      and the boundary conditions 

     𝑥 𝑎 = 𝑥𝑎 ,   𝑥 𝑇 = 𝑥𝑇 ,    𝑥· 𝑎 = 𝑥𝑎   and , 𝑥· 𝑇  is not specified                                                                  (44) 
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     where 𝑀, 𝑁 ≠ 0, 𝑇, 𝑥𝑎  𝑎𝑛𝑑  𝑥𝑇  are fixed real numbers.  

Theorem (4.1):   

If  𝑥, 𝑢, 𝑇  is a minimizer of (42), (43) and (44), then there exists a function 𝜆(𝑡)  for which  𝑥, 𝑢, 𝑇 satisfies the 

RLD-composition fractional optimality conditions: 

i) the 𝐻amiltonian system defined as  

𝑀 𝐷𝑏
𝜐

𝑡
 𝐶 𝜆 𝑡 + 𝑁 𝐷𝑏

𝛼
𝑡  𝐷𝑏

𝛽
𝑡 𝜆 𝑡  =

𝜕𝐻

𝜕𝑥
 𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡) 

  𝑀𝑎𝐷𝑡
𝜐𝑥 𝑡 + 𝑁 𝐷𝑡

𝛼
𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  =

𝜕𝐻

𝜕𝜆
 𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡) 

                                        (45)  

the stationary  condition  

 

ii) 
𝜕𝐻

𝜕𝑢
 𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡) = 0                                                                                                                        (46)                                                                   

 for all  𝑡 ∈  𝑎, 𝑇 ; 

Proof: 

We consider the following multi-composite fractional optimal control problem  

minimize J 𝑥, 𝑢, 𝑇 =  𝑓0 𝑡, 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡

𝑇

𝑎

,     

                                                𝑀 𝐷𝑡
𝛼

𝑎
𝐶  𝑡 + 𝑁 𝐷𝑡

𝛽
𝑎
𝐶  𝐷𝑡

𝜇
𝑎
𝐶 𝑥 𝑡  = 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  , 

Thus,     𝐽∗ 𝑥, 𝑢, 𝑇, 𝜆 =  {(𝑓0 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡 
𝑇

𝑎
·  𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  − 𝑀𝑎𝐷𝑡

𝜐𝑥 𝑡 + 𝑁 𝐷𝑡
𝛼

𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡   }𝑑𝑡. 

                                                                                                                                                                                (47) 

Suppose that,               

𝐹 = 𝑓0 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  − 𝑀𝜆 𝑡 𝑎𝐷𝑡
𝜐𝑥 𝑡 − 𝑁𝜆 𝑡 𝐷𝑡

𝛼
𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  .                                  (48) 

Evaluating the Euler equation for 𝑥 𝑡 , 
𝜕𝐹

𝜕𝑥 (𝑡)
−

𝑑

𝑑𝑡
 

𝜕𝐹

𝜕𝑥 · 𝑡 
 = 0,                                                                                                                                           (49) 

From property (7), we get  

𝐹 = 𝑓0 𝑡, 𝑥 𝑡 , 𝑢 𝑡  + 𝜆 𝑡 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  − 𝑀𝑥 𝑡 · 𝐷𝑏
𝜐

𝑡
 𝐶 𝜆 𝑡 − 𝑁𝑥 𝑡 · 𝐷𝑏

𝛼
𝑡  𝐷𝑏

𝛽
𝑡 𝜆 𝑡  .                          (50) 

Then from (49) which gives 

𝜕𝑓0

𝜕𝑥  𝑡 
+ 𝜆 𝑡 

𝜕𝑓

𝜕𝑥 𝑡 
− 𝑀 𝐷𝑏

𝜐
𝑡

 𝐶 𝜆 𝑡 − 𝑁 𝐷𝑏
𝛼

𝑡  𝐷𝑏
𝛽

𝑡 𝜆 𝑡  = 0,                                                                                  (51) 

From (50), we get     
𝑑

𝑑𝑡
 

𝜕𝐹

𝜕𝑥 · 𝑡 
 = 0, 

𝑀 𝐷𝑏
𝜐

𝑡
 𝐶 𝜆 𝑡 + 𝑁 𝐷𝑏

𝛼
𝑡  𝐷𝑏

𝛽
𝑡 𝜆 𝑡  =

𝜕𝑓0

𝜕𝑥 𝑡 
+ 𝜆 𝑡 

𝜕𝑓

𝜕𝑥 𝑡 
.                                                                                         (52) 

Now, evaluating Euler's equation for 𝜆 𝑡 ; that is, 

 
𝜕𝐹

𝜕𝜆 (𝑡)
−

𝑑

𝑑𝑡
 

𝜕𝐹

𝜕𝜆 · 𝑡 
 = 0                                                                                                                                             (53) 

Then according to (53) for (48) which gives: 

𝑀𝑎𝐷𝑡
𝜐𝑥 𝑡 + 𝑁 𝐷𝑡

𝛼
𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  =

𝜕𝑓0

𝜕𝜆 𝑡 
+ 𝜆 𝑡 

𝜕𝑓

𝜕𝜆 𝑡 
. 0,                                                                                       (54) 

Finally, the Euler's equation for  𝑢 𝑡 ; that is, 
𝜕𝐹

𝜕𝑢 (𝑡)
−

𝑑

𝑑𝑡
 

𝜕𝐹

𝜕𝑢 · 𝑡 
 = 0                                                                                                                                            (55) 

From (48) it is clear that  
𝑑

𝑑𝑡
 

𝜕𝐹

𝜕𝑢 · 𝑡 
 = 0, then we get  
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𝜕𝐹

𝜕𝑢 (𝑡)
=

𝜕𝑓0

𝜕𝑢 (𝑡)
+ 𝜆 𝑡 

𝜕𝑓

𝜕𝑢 (𝑡)
= 0                                                                                                                                (56) 

From (52), (54) and (56) we have that, 

 
𝑀 𝐷𝑏

𝜐
𝑡

 𝐶 𝜆 𝑡 + 𝑁 𝐷𝑏
𝛼

𝑡  𝐷𝑏
𝛽

𝑡 𝜆 𝑡  =
𝜕𝐻

𝜕𝑥
 𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡) 

   𝑀𝑎𝐷𝑡
𝜐𝑥 𝑡 + 𝑁 𝐷𝑡

𝛼
𝑎
𝐶  𝐷𝑡

𝛽
𝑎
𝐶 𝑥 𝑡  =

𝜕𝐻

𝜕𝜆
 𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡) 

 

0 =
𝜕𝐻

𝜕𝑢
 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝜆 𝑡  ,for all  𝑡 ∈  𝑎, 𝑇 . 

5. Illustrative Example: 

In this section, we developed the algorithm for solution the Riemann-Liouville derivative-composition fractional 

order optimal control problems. 

Consider the following linear–quadratic of RLD fractional optimal control problem: 

min J 𝑥, 𝑢 =  𝐽 𝑥, 𝑢 =  𝑢2 𝑡  𝑑𝑡
1

0
,                                                                                                                     (57) 

subject to the fractional dynamic control system 

0𝐷𝑡
𝜐𝑥 𝑡 + 𝐷𝑡

𝛼
0
𝐶  𝐷𝑡

𝛽
0
𝐶 𝑥 𝑡  = 𝑢 𝑡 +  

6𝑡𝛼+𝛽−𝜐+1

Г(𝛼+𝛽−𝜐+2)
−

6𝑡𝛼+𝛽−𝜐

Г 𝛼+𝛽−𝜐+1 
+ 

Г 𝛽+1 𝑡𝛽−𝜐

Г 𝛽−𝜐+1 
+

𝑡−𝜐

Г 1−𝜐 
.                               (58) 

      and the boundary conditions  

𝑥 0 = 1,   𝑥 1 = 0,    𝑥· 0 = 1  and , 𝑥· 1  is not specified                                                                             (59) 

The exact solution for  𝜐 = 𝛼 = 𝛽 = 1 is given by: 

 𝑥 𝑡 , 𝑢 𝑡  =  
6𝑡𝛼+𝛽+1

Г(𝛼+𝛽+2)
−

6𝑡𝛼+𝛽

Г 𝛼+𝛽+1 
+ 𝑡𝛽 + 1 , 6 𝑡 − 1                                                                                   (60) 

Now, we develop algorithm for the solution (57), (58) and (59). It is based on the necessary optimality conditions 

of RLD composition-order fractional optimal control from Theorem (4.1) as the following steps: 

 

Step 1: Compute the 𝐻amiltonian function   

𝐻 𝑡, 𝑥, 𝑢, 𝜆 =  𝑢2 𝑡 + 𝜆 𝑡  𝑢 𝑡 + 
6𝑡𝛼+𝛽−𝜐 +1

Г(𝛼+𝛽−𝜐+2)
−

6𝑡𝛼+𝛽−𝜐

Г 𝛼+𝛽−𝜐+1 
+

Г 𝛽+1 𝑡𝛽−𝜐

Г 𝛽−𝜐+1 
+

𝑡−𝜐

Г 1−𝜐 
 .                                   (61) 

Step 2: Derive the necessary optimality conditions of RLD composition-order fractional optimal control from 

Theorem (4.1): 

  Suppose that  𝑀 = 𝑁 = 1, of the constraint (58), then 

0𝐷𝑡
𝜐𝑥 𝑡 + 𝐷𝑡

𝛼
0
𝐶  𝐷𝑡

𝛽
0
𝐶 𝑥 𝑡  = 𝑢 𝑡 +  

6𝑡𝛼+𝛽−𝜐+1

Г(𝛼+𝛽−𝜐+2)
−

6𝑡𝛼+𝛽−𝜐

Г 𝛼+𝛽−𝜐+1 
+      

Г 𝛽+1 𝑡𝛽−𝜐

Г 𝛽−𝜐+1 
+

𝑡−𝜐

Г 1−𝜐 
,                           (62) 

𝐷1
𝜐

𝑡
 𝐶 𝜆 𝑡 + 𝐷1

𝛼
𝑡  𝐷1

𝛽
𝑡 𝜆 𝑡  = 0,                                                                                                                         (63) 

𝑢 𝑡 = −
1

2
𝜆 𝑡 .                                                                                                                                                      (64) 

Step 3: Substitution control variable 𝑢 𝑡  from (64) in equation (62) to obtain: 

0𝐷𝑡
𝜐𝑥 𝑡 + 𝐷𝑡

𝛼
0
𝐶  𝐷𝑡

𝛽
0
𝐶 𝑥 𝑡  

= −
1

2
𝜆 𝑡 +  

6𝑡𝛼+𝛽−𝜐+1

Г(𝛼 + 𝛽 − 𝜐 + 2)
−

6𝑡𝛼+𝛽−𝜐

Г 𝛼 + 𝛽 − 𝜐 + 1 
+       

Г 𝛽 + 1 𝑡𝛽−𝜐

Г 𝛽 − 𝜐 + 1 
+

𝑡−𝜐

Г 1 − 𝜐 
, 

                                                                                                                                                                                (65) 

Using property (5) and (6) for equations (63) and (65), we get the coupled system: 

 
 
 

 
 𝐷1

𝜐
𝑡

 𝐶 𝜆 𝑡 + 𝐷1
𝛼+𝛽

𝑡 𝜆 𝑡 −  𝐷1
𝛽−1

𝜆 𝑡 𝑡  
𝑡=1

 1 − 𝑡 −𝛼−1

Г −𝛼 
= 0,                                                                                        66𝑎 

0𝐷𝑡
𝜐𝑥 𝑡 + 𝐷𝑡

𝛼+𝛽
𝑥 𝑡 0

𝐶 = −
1

2
𝜆 𝑡 +  

6𝑡𝛼+𝛽−𝜐+1

Г 𝛼 + 𝛽 − 𝜐 + 2 
−

6𝑡𝛼+𝛽−𝜐

Г 𝛼 + 𝛽 − 𝜐 + 1 
+
Г 𝛽 + 1 𝑡𝛽−𝜐

Г 𝛽 − 𝜐 + 1 
+

𝑡−𝜐

Г 1 − 𝜐 
.  66𝑏 
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Step 4: Using the Chebyshev expansion method, get an approximate solution of 𝜆 𝑡  from (20) and  𝑥 𝑡   

from (34): 

 𝑑𝑠,𝑟
 𝜐 

𝑁

𝑟=0
𝜆 𝑡𝑟 +

𝜆 1 

Г 1 −  𝛼 + 𝛽  
 1 − 𝑡𝑠 

− 𝛼+𝛽 +
𝐽 𝑡𝑠; 𝑝𝑁 

Г 1 −  𝛼 + 𝛽  
−  𝐷1

𝛽−1
𝜆 𝑡𝑠 𝑡  

𝑡=1

 1 − 𝑡𝑠 
−𝛼−1

Г −𝛼 
= 0, 

                                                                                                                                                                                (67) 

𝑥 1 

Г 1−𝜐 
 1 − 𝑡𝑠 

− 𝜐 +
𝐽 𝑡𝑠;𝑝𝑁  

Г 1−𝜐 
+  𝑑𝑠,𝑟

 𝛼+𝛽 𝑁
𝑟=0 𝑥 𝑡𝑟 = −

1

2
𝜆 𝑡𝑠 +  

6𝑡𝑠
𝛼+𝛽−𝜐+1

Г 𝛼+𝛽−𝜐+2 
−

6𝑡𝑠
𝛼+𝛽−𝜐

Г 𝛼+𝛽−𝜐+1 
+

Г 𝛽+1 𝑡𝑠
𝛽−𝜐

Г 𝛽−𝜐+1 
+

𝑡𝑠
−𝜐

Г 1−𝜐 
.                                                                                                                                                                      (68) 

where 𝑑𝑠,𝑟
 𝜐 

 and 𝑑𝑠,𝑟
 𝛼+𝛽 

 is defined in (21) and evaluating the results at the shifted Gauss-Lobatto nodes 𝑡𝑠 , from 

(21), 𝑠 = 1,2, … , 𝑁 − 1. 

Step 5: Evaluating the results at the shifted Gauss-Lobatto nodes 𝑡𝑠 ,from (18), 𝑠 = 1,2, … , 𝑁 − 1,and  𝛼, 𝛽 and  

𝜇 ∈  0,1 . 

Let  𝑁 = 2, 𝜐 = 0.12,   𝛼 = 0.4,       𝛽 = 0.3. 

𝑠 = 1,2, … , 𝑁 − 1, and since  𝑁 = 2, then 𝑠 = 1. 𝑡1 =
1

2
−

1

2
cos(

𝜋

2
) = 0.5 

From the system (68), we have  

𝑥 1 

Г 1 − 0.12 
 0.5 − 0.12 +

𝐽 𝑡1; 𝑝𝑁 

Г 1 − 0.12 
+ 𝑑1,0

 0.7 
𝑥 𝑡0 + 𝑑1,1

 0.7 
𝑥 𝑡1 + 𝑑1,2

 0.7 
𝑥 𝑡2 

=  
6(0.5)1.5800

Г 2.5800 
−

6 0.5 0.5800

Г 1.5800 
+
Г 1.3  0.5 0.1800

Г 1.1800 
+

 0.5 −0.12

Г 0.8800 
 , 

 

 1.0013 𝑥 1 +  0.9214 𝐽 𝑡1; 𝑝𝑁 + 𝑑1,0
 0.7 

𝑥 𝑡0 + 𝑑1,1
 0.7 

𝑥 𝑡1 + 𝑑1,2
 0.7 

𝑥 𝑡2 = −1.0189.                              (69) 

Use (21) to evaluating the results of   𝑑1,0
 0.7 

, 𝑑1,1
 0.7 

, and 𝑑1,2
 0.7 

,which is shown in table (1) as follows: 

Table (1): Shows results of Caputo fractional derivative when 𝛼 = 0.4,𝛽 = 0.3, 𝛼 + 𝛽 = 0.7. 

 

𝒏 𝒋 𝒌 𝒅𝟏,𝟎
 𝟎.𝟕 

 𝒅𝟏,𝟏
 𝟎.𝟕 

 

1 0 1 -0.8154 0 

1 1 1 0 0 

1 2 1 -0.0572 0 

2 0 1 -0.8154 0.8154 

2 1 1 0 0 

2 2 1 -0.0572 0.0572 

2 0 2 0.7720 -0.7720 

2 1 2 0 0 

2 2 2 -0.0396 0.0396 

𝒔𝒖𝒎 -1.0128 0.1402 

𝒅𝒔,𝒓
(𝜶)

= 𝟒𝜽𝒓/𝑵. 𝒔𝒖𝒎 -1.0128 0.0701 

 

 

when          𝑟 = 0   →  
4𝜃0

𝑁
=

4(0.5)

2
= 1and    𝑟 = 1   →  

4𝜃1

𝑁
=

4 1 

2
= 2 

Since , 𝑥· 1  is not specified, then we have the transversality condition 

𝜆 𝑡2 = 0, We conclude from this   𝐽 𝑡1; 𝑝𝑁 = 0, and use the boundary conditions (59) in (69) to get  𝑡1  : 

 1.0013  0 +  0.9214  0 +  −1.0128  1 +  0.0701 𝑥 𝑡1 + 𝑑1,2
 0.7  0 = −1.0119. 

→ 𝑥 𝑡1 = 0.0128. 
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Step 6.Computeapproximation solution of 𝑥(𝑡) at 𝑁 = 2 by (19), and 𝑢(𝑡) from (58).   

𝑥2 𝑡 =
2

𝑁
   𝑥 𝑡𝑟 𝑇𝑛

𝑝 𝑡𝑟 

𝑁  ′′

𝑟=0

𝑇𝑛
𝑝 𝑡 ,

𝑁  ′′

𝑛=0

 

𝑥2 𝑡 =
1

2
𝑎0 𝑇0

𝑝 𝑡 + 𝑎1 𝑇1
𝑝 𝑡 +

1

2
𝑎2 𝑇2

𝑝 𝑡 .                                                                                                        (70) 

 

To find   𝑎0 , 𝑎1  and 𝑎2  

If 𝑛 = 0  →  𝑎0 =  𝑥 𝑡𝑟 𝑇0
𝑝 𝑡𝑟 ,2   ′′

𝑟=0                                  𝑖. 𝑒.  𝑇0
𝑝 𝑡 = 1. 

                         = 0.5128. 

If 𝑛 = 1  →  𝑎1 =  𝑥 𝑡𝑟 𝑇1
𝑝 𝑡𝑟 ,2   ′′

𝑟=0                                𝑖. 𝑒.  𝑇1
𝑝 𝑡 =

2𝑡

𝑏
− 1. 

                         = −0.5 

If 𝑛 = 2  →  𝑎2 =  𝑥 𝑡𝑟 𝑇2
𝑝 𝑡𝑟 ,2   ′′

𝑟=0                                  𝑖. 𝑒.  𝑇2
𝑝 𝑡  from (13). 

                         = 0.4872.                                                                            

We substitute 𝑎0 , 𝑎1 ,  and 𝑎2 , in (70), to get 

𝑥2 𝑡 = 1.9488𝑡2 − 2.9488𝑡 + 1.                                                                                                                        (71) 

To compute the approximation solution of the control 𝑢 𝑡 , we get  

𝑢 𝑡 = 0𝐷𝑡
𝜐𝑥 𝑡 + 𝐷𝑡

𝛼
0
𝐶  𝐷𝑡

𝛽
0
𝐶 𝑥 𝑡  −

6𝑡𝛼+𝛽−𝜐+1

Г 𝛼+𝛽−𝜐+2 
+

6𝑡𝛼+𝛽−𝜐

Г 𝛼+𝛽−𝜐+1 
−

Г 𝛽+1 𝑡𝛽−𝜐

Г 𝛽−𝜐+1 
−

𝑡−𝜐

Г 1−𝜐 
.                                 (72) 

After we derive a fractional derivation of the power function of Caputo’s derivative and R-L derivative and 

substitute (71) in (72), we have: 

𝑢 𝑡 = 2.1707 𝑡1.8800 − 3.0875𝑡0.8800 + 3.3407𝑡1.3 − 3.2857𝑡0.3 − 4.2600𝑡1.5800 + 6.7308𝑡0.5800

− 0.9716𝑡0.1800 . 

Table (2): Shows numerical results of the exact and approximate state 𝑥 𝑡  and control 𝑢 𝑡  for 𝑁 = 2. 
 

t 

𝜶=0.4 

𝜷=0.3 

𝒗=0.12 

𝜶=1 

𝜷=1 

𝒗=1 

𝜶=0.4 

𝜷=0.3 

𝒗=0.12 

𝜶=1 

𝜷=1 

𝒗=1 

𝒙 𝒕  𝒙 𝒕  𝒖 𝒕  𝒖 𝒕  

0 1 1 0 -6 

0.1 1.0724 1.0710 -3.8413 -5.4000 

0.2 1.0488 1.0880 -2.6746 -4.8000 

0.3 1.0290 1.0570 -2.5056 -4.2000 

0.4 0.1323 0.9840 -1.3411 -3.6000 

0.5 0.5128 0.8750 -1.1798 -3 

0.6 0.6770 0.7360 -1.0199 -2.4000 

0.7 0.3109 0.5730 -0.1404 -1.8000 

0.8 0.3111 0.3920 -0.3025 -1.2000 

0.9 0.1075 0.1990 -0.4679 -0.6000 

1 0.6374 0 0 0 
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Figure 1:             
 
 

 
(a) Exact solution of  𝒙 𝒕  for (𝑵 = 𝟐) and  𝒗 = 𝜶 = 𝜷 = 𝟏. 
(b) Approximate solutions of  𝒙 𝒕  for (𝑵 = 𝟐) and 𝝂 = 𝟎. 𝟏𝟐, 𝜶 = 𝟎. 𝟒 and 𝜷 = 𝟎. 𝟑 

 

 

            Figure 2: 
 

 
(c) Exact solution of  𝒖 𝒕  for (𝑵 = 𝟐) and  𝜶 = 𝜷 = 𝟏. 
(d) Approximate solutions of  𝒖 𝒕  for (𝑵 = 𝟐) and 𝝂 = 𝟎. 𝟏𝟐, 𝜶 = 𝟎. 𝟒 and 𝜷 = 𝟎. 𝟑. 

 
 

6. Conclusions 
 

In this paper, we introduced an accurate numerical scheme for solving a class of RLD composition-order 

fractional optimal control problems, when 𝛼 = 0.4, 𝛽 = 0.3 and  𝑣 = 0.12at (𝑁 = 2).In this case, the solution is 

approximated by Chebyshev series.  
 

Numerical results for illustrative example show that the algorithm converge from the exact solution when 

𝛼 = 𝛽 = 𝑣 = 1, and we note that the convergent to the exact solution is dependent on increasing of the fractional 

order of derivative. 

 

References 
 

[1] Agrawal, Om P., and Dumitru Baleanu. " A Hamiltonian formulation and a direct numerical scheme for 

fractional optimal control problems." Journal of Vibration and Control13.9-10 (2007): 1269-1281.  

[2] Agrawal, Om Prakash. "A general formulation and solution scheme for fractional optimal control 

problems." Nonlinear Dynamics 38.1-4 (2004): 323-337. 

[3] Agrawal, Om P. "A quadratic numerical scheme for fractional optimal control problems." Journal of dynamic 

systems, measurement, and control 130.1 (2008): 011010.  

[4] Agrawal, Om P. "Fractional optimal control of a distributed system using eigenfunctions." Journal of 

Computational and Nonlinear Dynamics 3.2 (2008): 021204.  



ISSN 2221-0997 (Print), 2221-1004 (Online)             © Center for Promoting Ideas, USA            www.ijastnet.com 

 

47 

 

[5] Akbarian, T., and M. Keyanpour. " A new approach to the numerical solution of fractional order optimal 

control problems." Applications and Applied Mathematics 8.2 (2013): 523-534.  

[6] Al-Mdallal, Qasem M., Muhammed I. Syam, and M. N. Anwar. " A collocation-shooting method for solving 

fractional boundary value problems." Communications in Nonlinear Science and Numerical 

Simulation 15.12 (2010): 3814-3822. 

[7] Bagley.R. L. and TorvikP. J., " On the appearance of the fractional derivative in the behavior of real 

materials," J. Appl. Mech. 51 (1984), 294-298. 

[8] Baleanu.D., Machado.J. A. T.  andLuo, A. C. (Eds.). " Fractional dynamics and control."  Springer Science & 

Business Media, 2011.  

[9] Baleanu.D., DefterliO.., and Agrawal.O. P.  "A central difference numerical scheme for fractional optimal 

control problems," Journal of Vibration and Control, vol. 15, no. 4, pp.583–597, 2009. 

[10] Bell, William Wallace. " Special functions for scientists and engineers." Courier Corporation, 2004.    

[11] Burghes, David N., and Alexander Graham. " Control and optimal control theories with applications." 

Elsevier, 2004. 

[12] Doha, E. H., A. H. Bhrawy, and S. S. Ezz-Eldien. "  Efficient Chebyshev spectral methods for solving multi-

term fractional orders differential equations." Applied Mathematical Modelling35.12 (2011): 5662-5672. 

[13] Frederico.G. S. F.  and TorresD. F. M.., "Fractional optimal control in the sense of Caputo and the fractional 

Noether’s theorem," International Mathematical Forum, vol. 3, no. 10, pp. 479–493, 2008. 

[14] Frederico, Gastao SF, and Delfim FM Torres. "Noether's theorem for fractional optimal control 

problems." IFAC Proceedings Volumes 39.11 (2006): 79-84. 

[15] Khader.M. M. " On the numerical solutions for the fractional diffusion equation." Communications in 

Nonlinear Science and Numerical Simulation, 16(2011):2535–2542. 

[16] Meerschaert.M. M.  and  TadjeranC..," Finite difference approximations for two-sided space fractional partial 

differential equations," Appl. Numer. Math. 56 (2006), 80-90. 

[17] Ozdemir, Necati, et al. "Fractional optimal control of a 2-dimensional distributed system using 

eigenfunctions." Nonlinear Dynamics 55.3 (2009): 251. 

[18] Ozdemir.N., KaradenizD.., and I˙skender.B. B., " Fractional optimal control problem of a distributed system 

in cylindrical coordinates," Physics Letters A, vol. 373, no. 2, pp. 221–226, 2009. 

[19] Podlubny.I. "Fractional Differential Equations."  Academic Press, New York, 1999. 

[20] Sweilam, N. H., and M. M. Khader. " A Chebyshev pseudo-spectral method for solving fractional-order 

integro-differential equations." The ANZIAM Journal 51.4 (2010): 464-475.  

[21] Sweilam, N. H., Al-Ajami, T. M., & Hoppe, R. H. "Numerical solution of some types of fractional optimal 

control problems." The Scientific World Journal, 2013. 

[22] Tricaud, Christophe, and YangQuan Chen. "Solving fractional order optimal control problems in riots 95—a 

generalpurpose optimal control problem solver." Proceedings of the 3rd IFAC Workshop on Fractional 

Differentiation and its Applications. 2008. 

 

 

 

 

 

 


