Assessment and Comparison of Accuracies of Three Differential Global Positioning System (DGPS) Data Processing Software

Bala, M. G. Department of Basic Science College of Agriculture, Gujba, P.M.B. 1104 Damaturu, Yobe State Nigeria

Edan J. D

Mohammed A.

Department of Surveying and Geoinformatics Modibbo Adama University of Technology, P.M.B. 2076 Yola, Adamawa State Nigeria

Abstract

The research investigates the capability and accuracy of three different instruments software used in processing Differential Global Positioning System (DGPS) data. To examine this task, a reference network comprising of 20 control points was established using static mode observations. The data were collected using Promark3 DGPS and were processed using the three different software namely Ashtech Office Suite (AOS), Trimble Business Center (TBC) and Hi-target Geomatics Office (HGO). Statistical analyses did not show any significant difference between the three processing software. The three software were further evaluated and analyzed graphically using Error ellipse. The results indicated that HGO has the least uncertainty of 16.2632% average value of the axis, but it fails to process one of the points (MG12). TBC software had the second uncertainty average value of the axis of 16.3158%. The third software, AOS yielded 67.4210% uncertainty average value of the axis. TBC and HGO were therefore revealed to have the same precision, but HGO has limitation in terms of antenna selection. In DGPS surveys, TBC software is therefore recommended for processing data observed by any GPS receiver.

Keywords: DGPS, Post Processing, Differential Correction, Relative Precision, Ambiguity and Uncertainty

1.0 Introduction

In the earlier days surveying was labour intensive, time consuming and less accurate. The development of Global Positioning System (GPS) technologies have made the acquisition of highly accurate and reliable data possible with reduced physical efforts. These technologies reduced about one half of project cost and save about two third of the project time when compared to the conventional methods (Kumar *et al.* 2012). With the advancement of technology, surveys have become faster and milestone successes have been achieved. Some of the most important ones have come in the form of software which can greatly improve the speed of delivery and the GPSs ability to overcome the problem of intervisibility (Ansah, 2006).

As with traditional geodetic network adjustment, data processing for precise GPS static positioning is invariably performed using the least-squares method. To employ the least-squares method, both the functional and stochastic models of the GPS measurements need to be defined. The functional model, also called the mathematical model, describes the mathematical relationships between the GPS measurements and the unknown parameters, such as the ambiguity terms and the baseline components. The stochastic model describes the statistical properties of the measurements, which are mainly defined by an appropriate covariance matrix. In order to ensure high accuracy, both the functional model and the stochastic models must be correctly defined. If the function model is adequate, the residuals obtained from the least-squares solution is randomly distributed. Over the last two decades the functional models for GPS carrier phases have been investigated in considerable detail, and are well documented in the literature, (Satirapod, 2002).

Accuracy is the degree of conformity with a standard or a measure of closeness to a true value. It relates to the quality of the result obtained when compared to the standard. Since a GPS receiver calculates its position once every second and each measurement is subjected to introduce errors, the position is slightly different from the previous one, even if the receiver is static at one location.

Real-time differential correction for Real-time DGPS has had a very positive effect on navigation and verification of spatial data. But there are places in the world that do not have reliable real-time DGPS services, and many applications need better accuracy than is achievable from current real-time correction methods. Differential correction is a method of removing the errors, both man-made and natural that affect GPS measurements. Correction of GPS coordinates can be accomplished at a later time (post processing) or while the roving GPS receiver is in use. Depending on the technique used, post processed differential correction can deliver GPS data accurate to few maters in moving applications and to a few centimetre in stationary situations, these levels of accuracy are now easier than ever to achieve (Trimble, 2004).

2.0 Research Problem

In recent times, there is a proliferation in the use of different software technology in the field of Surveying and Geoinformatics. Numerous manufacturers keep on developing various types of GPS technologies such as Promark3, Topcon and Leica for different surveying purposes. These instruments' have their respective processing software which often pose problems to surveyors and engineers when processing field data and adjusting results. The problems vary from incompatibility to inaccuracy in obtaining data. These are essential issues in the field of surveying and Geoinformatics with regards to technology application but they are neglected by several researchers and studies. In order to address these problems, this research seeks to investigate the capability of different instruments' software to process data observed using any GPS receiver, and to identify the model that will make different GPS receivers to work with one another's software and find the most accurate among these software when it comes to data processing and adjusting results.

3.0 Study Area

To obtain the data used in this research, a DGPS survey was conducted at Modibbo Adama University of Technology (MAUTECH) Yola main campus. This area of study is located along Yola-Mubi road in Girei Local Government Area of Adamawa, Nigeria. As shown in Figure 1, the study area extends from 12° 28′ 02″E to 12° 30′ 32″ E in longitude and 9° 19′ 48″N to 9° 24′ 18″N in latitude, covering an area of 4317.579Ha (Mohammed *et. al.* 2017).

Figure 1: Location of the Study Area

4.0 Methods/Materials

Prior to field data acquisition, the static survey was first planned using GPS mission planning to increase chances of success in the DGPS survey. The network design and observation plan which are the two primary areas of static survey planning were duly adhered to in the GPS mission planning (satellite prediction analysis). Upon the completion of the network design and planning mission, the intent of the data collection was achieved. The procedure for data acquisition and processing, results and analysis of the results are therefore described in the following paragraphs

4.1 Data Acquisition

The study involved the use of ProMark 3 GPS on differential mode to acquire field data. 20 stations were marked and monumented on ground in accordance to specific regulations within the study area during reconnaissance survey. 30 minutes Post Processing Static (PPS) rover observations were carried out on all the established points at a sampling rate of 2 seconds. The acquired data were later downloaded into a computer from the receivers to commence processing.

4.2 Data Processing

Data processing algorithm for software employed in this research include Ashtech Office Suite (AOS), Trimble Business Center (TBC) and Hi-target Geomatics Office (HGO) which vary slightly depending on the manufacturers' instruction and guideline; but few steps are common to all of them. The coordinates of 20 control points were processed and adjusted with AOS and TBC. However, HGO failed to process and adjust one of the 20 control points (MG12). This may be due to the fact that there is no provision for selecting antenna type used during the field operation.

4.3 Results Presentation

The results for most probable values (MPVs) of coordinates computed are presented as shown in Tables 1 to 3.

S/No	Name	Easting (m)	Northing (m)	Ellipsoidal
		-	-	height (m)
1	MG10	223902.5400	1034279.2440	222.4150
2	MG11	223805.4820	1034746.1720	215.7700
3	MG12	224809.8520	1035048.1030	223.6360
4	MG13	224701.9880	1034641.4920	230.4810
5	MG14	224610.6350	1034285.3050	232.6700
6	MG15	225072.5650	1034303.7080	239.3470
7	MG16	225431.2100	1034643.6940	235.6200
8	MG17	225780.9400	1034544.9560	239.6270
9	PC03	224314.3840	1034923.5000	220.1900
10	CM03	224314.4570	1034923.4030	218.1140
11	MG01	226176.4390	1033767.1870	247.1240
12	MG02	225698.8590	1033550.3960	243.5610
13	MG03	225252.6520	1033404.1510	235.6930
14	MG04	224796.3250	1033203.8730	236.1880
15	MG05	224296.3570	1032378.8600	247.1220
16	MG06	223944.6680	1032958.0050	232.8620
17	MG07	224262.8430	1033235.9330	231.7450
18	MG08	224098.3180	1033323.9450	227.9940
19	MG09	224635.4860	1033514.8220	228.7820
20	UMY6	224249.1000	1033765.3480	222.0800

Table 1: Processed UTM Coordinates (WGS 84) with AOS GNSS Solutions Software

S/No	Name	Easting (m)	Northing(m)	Ellipsoidal
				height (m)
1	MG10	223903.5780	1034278.5340	209.1940
2	MG11	223806.7970	1034744.2590	196.2060
3	MG12	224811.2720	1035048.0550	203.8820
4	MG13	224699.7530	1034641.1920	223.2300
5	MG14	224610.0180	1034283.8240	219.9910
6	MG15	225077.1910	1034302.5240	218.2360
7	MG16	225431.6930	1034643.4350	219.5510
8	MG17	225779.3130	1034543.0820	216.3410
9	PC03	224314.7770	1034922.0660	202.7860
10	CM03	224313.0880	1034921.4290	207.7090
11	MG01	226178.9480	1033766.6870	233.7830
12	MG02	225701.2960	1033549.1190	225.6630
13	MG03	225253.8790	1033403.9120	216.9870
14	MG04	224796.8790	1033203.1960	221.9060
15	MG05	224298.0400	1032381.1250	235.3560
16	MG06	223945.0290	1032956.3570	220.8020
17	MG07	224264.2360	1033234.1570	218.9330
18	MG08	224098.0250	1033322.5920	214.7450
19	MG09	224635.2710	1033514.0230	216.4680
20	UMY6	224254.1140	1033765.7440	212.9670

 Table 2: Processed UTM Coordinates (WGS 84) with TBC Software

Table 3: Processed UTM Coordinates (WGS 84) with HGO Software

S/No	Name	Easting(m)	Northing(m)	Ellipsoidal
				height (m)
1	MG10	223903.5777	1034278.5350	225.9999
2	MG11	223806.7970	1034744.2590	213.0074
3	MG12	Fail	Fail	Fail
4	MG13	224699.7535	1034641.1920	240.0218
5	MG14	224610.0178	1034283.8240	236.7882
6	MG15	225077.1914	1034302.5240	235.0266
7	MG16	225431.6934	1034643.4350	236.3329
8	MG17	225779.3133	1034543.0820	233.1201
9	PC03	224314.7766	1034922.0660	219.5783
10	CM03	224313.0879	1034921.4290	224.5017
11	MG01	226178.9478	1033766.6870	250.5669
12	MG02	225701.2956	1033549.1190	242.4551
13	MG03	225253.8793	1033403.9120	233.7871
14	MG04	224796.8792	1033203.1960	238.7141
15	MG05	224298.0396	1032381.1250	252.1812
16	MG06	223945.0286	1032956.3580	237.6240
17	MG07	224264.2363	1033234.1570	235.7477
18	MG08	224098.0252	1033322.5920	231.5599
19	MG09	224635.2712	1033514.0230	233.2742
20	UMY6	224254.1140	1033765.7440	229.7747

4.4 Analysis of the Results

Two main statistical distributions were used: Chi-square (χ^2) and the t or student-t distributions. The χ^2 distribution was used to test the sample variance to determine whether it was in agreement with the population variance. A confidence region was established for the sample variance. The actual location of the sample variance was based on some specific percentage probability.

The sample set variances and the degrees of freedom for the particular problem and to test the variance, a confidence region was created. Harvey (1994) gave the test statistics as given in equations (1) and (2).

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \tag{1}$$

$$\frac{dfS^2}{\chi^2_{(\gamma'_2)}} < \sigma^2 < \frac{dfS^2}{\chi^2_{(1-\gamma'_2)}}$$
(2)

where df is the degrees of freedom and $(1 - \alpha)$ is the confidence interval and n the number of observations.

The results of the Analysis of Variance (ANOVA) shown in Table 4 decomposed the variance of the data into two components namely: a between-group component and a within-group component. The F-ratio, which in this case equals 0.000352011, is a ratio of the between-group estimate to the within-group estimate. Since the P-value of the F-test is greater than or equal to 0.05, there is no statistical significant difference between the means of the 3 variables at the 95.0% confidence level.

	•				
Source	Sum of	Df	Mean Square	F-Ratio	P-Value
	Squares				
Between groups	323.583	2	161.791	0.00	0.9996
Within groups	25738700	56	459620.0		
Total (Corr.)	25739000	58			

Table 4: Analysis of Variance of the three Software (ANOVA)

The table of multiple ranges in Table 5 applied a multiple comparison procedure and determined the means that were significantly different from one another. The bottom half of the output showed the estimated difference between each pair of means. There were no statistical significant differences between any pair of means at the 95.0% confidence level. In the top 3 rows of the same Table 5, one homogenous group was identified by a column of Xs. Within each column, the levels containing Xs form a group of means within which there were no statistical significant differences. The method currently being used to classify among the means is Fisher's least significant difference (LSD) procedure. With this method, there is a 5.0% risk of calling each pair of means significantly different when the actual difference equals 0.

Table 5: Multiple Range Tests (Orthogona	l contracts) of the three software
--	------------------------------------

Softwar	e	Count	Mean	Homogeneous groups
HGO		19	224703.0	Χ
AOS		20	224708.0	Х
TBC		20	224709.0	Х
Contrast		Difference	+/- Limits	
AOS	– HGO	4.49577	435.085	
AOS	– TBC	-0.90485	429.47	

4.5 Coordinate Standard Deviations and Relative Error Ellipse

In error ellipse, the long semi-axis depicts the direction of greatest uncertainty while the short semi-axes show that of the smallest uncertainty (Vermeer, 2008). In trying to compare the level of graphical uncertainty of the three software, the percentage of sigma values were computed and resulted to 67.4210%, 16.3158% and 16.2632% of AOS, TBC and HGO respectively as shown in Figures 7 and 8. Error ellipses were also drawn on common origin (Figure 2) and it reveals that there were no significant differences between the two software: AOS, TBC and HGO as shown in Figure 3, but it showed great uncertainty of AOS compare to TBC and HGO. On MG12 both AOS and TBC resulted to 50% each of their sigma values as shown in Figure 4 and on the same figure, it also shows that TBC (Red error ellipse) and HGO (Green error ellipse) have the same precision, That is the reason why red error ellipses concealed out under the green error ellipse.

Software Ashtech				TBC	HGO					
S/N	Station	Major(a)	Minor(b)	Rotation (θ)	Major(a)	Minor(b)	Rotation (θ)	Major(a)	Minor(b)	Rotation (θ)
		(m)	(m)	(Deg)	(m)	(m)	(Deg)	(m)	(m)	(Deg)
1	MG10	0.2402505	0.110025382	25.06418849	0.0599067	0.028014848	25.09157988	0.0598027	0.027896903	25.0367782
2	MG11	0.8457409	0.306400215	64.71057272	0.2038328	0.094861327	64.70363077	0.2039602	0.094860992	64.7175122
3	MG12	0.2520500	0.000287990	0.065467873	0.2520500	0.00028799	0.065467873			
4	MG13	1.1098057	0.019789760	1.033117363	0.2776367	0.004989872	1.030361734	0.2772643	0.005009856	1.035878523
5	MG14	0.4877913	0.082808097	80.15176782	0.1218253	0.02110761	80.15724465	0.1219241	0.021148615	80.14629184
6	MG15	4.7710006		3.747634816	1.1889135	0.074173644	3.748604343	1.1895303	0.074171688	3.746665669
7	MG16	0.0518867	0.014900605	16.02971035	0.0129391	0.003726624	16.06753753	0.0130035	0.003726624	15.99200960
8	MG17	0.9028864	0.373929312	52.99884167	0.1984683	0.142517657	52.97919859	0.1985097	0.142377585	53.01848479
9	PC03	0.4568927	0.034015956	85.70814737	0.1142901	0.008593726	85.69776575	0.1141467	0.00854141	85.71852320
10	MG01	1.3988814	0.053390876	2.276222651	0.3497838	0.013832953	2.270228506	0.3496166	0.013899337	2.282226087
11	MG02	1.3440479	0.256982133	15.35404836	0.3304522	0.089150463	15.35371839	0.3301262	0.089069557	15.35437850
12	MG03	0.3346448	0.012661240	2.171367905	0.0835996	0.003175623	2.175686123	0.0837223	0.003167659	2.167057124
13	MG04	0.1021057	0.067801054	56.17471374	0.0254822	0.017031892	56.22687335	0.0254372	0.017068772	56.12252022
14	MG05	1.2670279	0.300986414	61.10402792	0.2876820	0.152408598	61.08031851	0.2878174	0.152203597	61.12773030
15	MG06	0.6033633	0.028674001	87.25501108	0.1509753	0.007252124	87.24838946	0.1507007	0.007204077	87.26163081
16	MG07	0.7511458	0.336143283	58.39178466	0.1762565	0.106137343	58.41694304	0.1761442	0.106269902	58.36661902
17	MG08	0.4069558	0.018990275	87.31782014	0.1016254	0.004774741	87.30935375	0.1018509	0.004755221	87.32626392
18	MG09	0.1419562	0.010255151	85.86500241	0.0354224	0.002572718	85.84572398	0.0355556	0.002558392	85.88420075
19	UMY6	5.5867314	0.031258351	0.357206497	1.3966779	0.008667527	0.357748047	1.3966779	0.008641456	0.356665358

Table 6:	Computed	Parameters of	of Relative	Error	Ellipses
----------	----------	---------------	-------------	-------	----------

Figure 2: Plan Showing the Established Control Points

Figure 3: Plan Showing the Control Points, AOS, HGO and TBC

Figure 4: Plan Showing the Control Points, AOS and TBC

Figure 5 Plan showing the control points, Ashtech and HGO

Figure 6: Plan Showing the Control Points, TBC and HGO

Figure 8: Comparison of Standard Deviation of the three Software on day-2

5.0 Research Findings

Based on the results of this research, the research findings are listed as follows:

- i. GPS data can be successfully processed using any of the three GPS processing software.
- ii. Results can be obtained near pinpoint accuracy using any of the three GPS processing software irrespective of manufactures recommendation.
- iii. Processing steps are similar for all the three software including creating new project, importing data, manipulation, processing and exporting of information produced to Microsoft Excel.
- iv. Data in RINX-File format is readable for all the three GPS processing software.
- v. The Trimble Business Center software (TBC) is secured by the manufacturer. Therefore data can only be processed with the use of dongle key.
- vi. TBC have provision for selecting antenna type like Magellan.
- vii. HGO failed to process MG12 because it has no capability of selecting antenna type.

6.0 Summary

The research tried to assess the relative precision of three different data processing software namely, Ashtech Office Suite (AOS), Trimble Business Centre (TBC) and Hi-Target Geomatics Office (HGO). Promark3 Differential Global Positioning System was used and 20 points were occupied (30mins) using static mode observation technique. The results obtained from the three software were analysed and graphically examined using error ellipse. It was revealed that TBC and HGO have the same relative precision. The reliability of the result was studied by means of statistical analysis termed Analysis of Variance (ANOVA) and Multiple Range Test (Orthogonal Contrast). The results did not show any significant difference between the three GPS processing software.

7.0 Conclusion/Recommendation

This study was to test the capability of different software to process DGPS raw data observed using any kind of DGPS receiver, but few mind to carry out rigorous computation to check the precision of the results obtained. Based on the statistical analysis, it was revealed that there is no significant difference between the three processing software. The research showed consistency in the result obtained using TBC and HGO, which have same precision. The two software can be used for processing data observed by any Global Positioning System (GPS) receiver. However, it was indicated that HGO has limitation in terms of antenna selection. Hence, TBC is most recommended.

References

- Ansah, M.O. (2006). Understanding GPS Processing and Results. Shaping the Change XXIII FIG Congress Munich, Germany, Ghana.
- Harvey B.R. (1994). Practical least squares and statistics for surveyors (Monograph 13). School of Surveying and Spatial Information Systems, University of New South Wales. 319 pp.
- Kumar, P., Chaudhary, K.S., Shukla, G. and Kumar, S (2012). *Assessment of Positional Accuracy of DGPS*: International Journal of Advances in Earth Sciences, Volume 2, Issue 1,1-7. India.
- Mohammed, A., Fajemirokun, F. A., Benjamin, J. B. (2017). Integration of Continuously Operating Reference Stations and Differential Global Positioning System in Second Order Control Establishment. *NED University Journal of Research - Applied Sciences, Vol XIV, No. 4*, pp-81-92
- Satirapod, C. (2002). Improving the GPS Data Processing Algorithm for Precise Static Relative Positioning. Unpublished Doctoral thesis, the University of New South Wales Sydney NSW 2052, Australia.
- Trimble (2004). Trimble Navigation Limited Manual. [Computer software and Manual]. Retrieved March 05, 2016
- Vermeer, M. (2008). Covariance analysis for geodesy and geophysics. Lecture notes, NKG Summer School, Nesjavellir, Iceland, 25-28 Aug. Landmaelingar Islands, URL: http://www.lmi.is/Files/Skra_0029262.pdf. Accessed date: 2nd February, 2016.