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Abstract 
 

The initial problem of systems of nonlinear ordinary differential equation with variable structure and impulses is 

considered in the paper. The changing (switching) in the right-hand side of the system and impulsive effects are 

realized at the moments, when the switching functions become zero. Sufficient conditions of continuous 

dependence of the solution on the initial condition and the switching functions are found.  
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1. Introduction 
 

The differential equations with variable structure and impulses are convenient mathematical apparatus for 

modeling the dynamic processes which are subjected to "the intensive and relatively short-term" external 

influences during its development. It is assumed that the duration of these effects is negligible compared with the 

total duration of the process, so that it can be considered as "instantaneous", in the form of impulses. Frequently, 

after these impulsive perturbations, the process continues its development, obeyed to the new rules and laws, 

different from the previous ones.  
 

Applications of the differential equations with variable structure are mainly in the  control theory: [9], [11], [14], 

[16], [17], [19], [27], [29] and [34]. The impulsive equations are used mostly for describing the species evolution: 

[6], [8], [13], [14], [15], [21], [22], [23], [24], [26], [30], [31], [32], [33], [35], [37], [38] and [39]. The equations 

with variable structure and impulses are used to investigate the dynamics of the hydraulic valve stopper in article 

[10].  The variable structure of the model system corresponds to the both states of the seal valve - "open" and 

"closed". The impulses are realized at the moments when the seal valve changes its position from “open” to 

“closed”. In fact, these impulses are realized at the moments when the valve shutter speed is zero, i.e. the seal 

valve touches its bed. 
 

The moments when, the impulsive effects are materialized and the structure changes can be determined in 

different ways, which define different classes of the considered systems. We quote the following: 
 

- The switching moments are fixed in advance: [1], [2], [7], [18] and [20];  

- The switching moments coincide with the moments at which the integral curve (trajectory) cancels the 

predefined functions, determined in the phase space of the system differential equations: [5], [14], [21] and 

[25]. These functions are called switchings; 

- The switching moments coincide with the moments, at which the trajectory of the system considered meets 

the predefined sets, situated in the extended phase space (in general these sets are hypersurfaces): [3], [9], 

[10], [12], [28] and [32]; 

- The switching moments coincide with the moments at which the solution minimizes a functional [4]; 

- The switching moments are random by their nature [36]. 

In this paper the switching moments are of the second type. 
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2. Preliminary results  
 

The main object of this paper is the following initial problem of the system of nonlinear ordinary differential 

equations with variable structure and impulses at non-fixed moments:  
 

(1)      1, , 0,i i i i

dx
f t x x t t t t

dt
     , 

(2)    0i ix t  , 1,2,...i  , 

(3)       0i i i ix t x t I x t   , 

(4)   0 0x t x , 
 

where  

- the functions : n

if R D R   ,  1 2, ,... n

i i i if f f f , the phase space D  is non empty domain of 
nR ; 

- the functions :i D R  ; 

- the functions :iI D R  and   :iId I D D  , Id  is an identity in 
nR ; 

- the initial point  0 0,t x R D  . 

The solution of the initial problem is a partially continuous function, with left continuity at the moments 1 2, ,...t t . 

Moreover, this solution is a diferetiable function in each of the open intervals  1 , , 1,2,...i it t i   It is satisfied: 

1.1. For 0 1,t t t t  , the solution of the problem (1), (2), (3), (4) coincides with the solution of the initial 

problem (1), (4) (with invariable structure and without impulses), i.e. coincides with the solution of the problem 
 

(5)    1 0 0, , ;
dx

f t x x t x
dt

   

 

1.2. For 0 1,t t t t  , it is satisfied   1 1 0x t  , where  1x t  is a solution of the initial problem (5); 

1.3. Let 1t  be the first moment after 0t , for which is satisfied the equation   1 1 1 0x t  ; 

1.4. At the moment 1,t  besides a changing of the right side of the problem considered, the impulsive perturbation 

of the solution takes place, i.e. it is done the equality (3) for 1i  . Ii is valid 
 

           1 1 1 1 1 1 1 1 10x t x t I x t Id I x t     ; 
 

2.1. For 1 2,t t t t  , the solution of the problem (1), (2), (3), (4) coincides with the solution of the initial 

problem 

 

(6)    2 1, , 0
dx

f t x x t
dt

       1 1 1Id I x t ; 

 

2.2. For 1 2,t t t t  , it is satisfied the inequality   2 2 0x t  , where  2x t  is a solution of the initial 

problem (6); 

2.3. Let 2t  be the first moment after 1t , for which it is fulfilled the equation   2 2 2 0x t  ; 

2.4. At the moment 2 ,t  the right hand side of the problem discussed and the impulsive perturbation takes place, 

i.e. it is done the equality (3) for 2i  . We have 
 

           2 2 2 2 2 2 2 2 20x t x t I x t Id I x t      

etc. 
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The solution of the problem is left continuous at the moments 1 2, ,...t t  In general (for example, when the 

functions   0iI x   for x D , 1,2,...i  ) this solution has discontinuous right hand side at the points, indicated 

above. There is a finite jump discontinuity at these points. We will denote, the points 1 2, ,...t t  switching moments, 

the functions , 1,2,...iI i  , are impulsive functions and , 1,2,...i i  , are switching functions. 

Further, the solution of the problem (1), (2), (3), (4) we will note with  0 0 1 2; , , , ,...x t t x   . More precisely,  we 

have 

(7)  

 

 

 

0 0 0 1

0 0 1 1 2

0 0 1 2

0 0 1 2 1

; , , ;

; , , , ;

; , , , ,... ............

; , , , ,... , ;

............

i i i

x t t x t t t

x t t x t t t

x t t x

x t t x t t t



 

   

 


 


 
  




 

With the basic problem we make a study of the so called perturbed initial problem: 

 

(8)       
*

* * * * *

1, , 0,i i i i

dx
f t x x t t t t

dt
     , 

(9)     * * * 0i ix t  , 1,2,...i  , 

(10)         * * * * * *0i i i ix t x t I x t   , 

(11)     * * *

0 0x t x , 

where: 

- the switching functions 
* :i D R  ; 

- the initial point  * *

0 0,t x R D  . 

The solution of this problem we denote by  * * * * *

0 0 1 2; , , , ,...x t t x   . Like (7) there is 

 

 

 

 

* * * * *

0 0 0 1

* * * * * *

0 0 1 1 2

* * * * *

0 0 1 2

* * * * * * * *

0 0 1 2 1

; , , ;

; , , , ;

; , , , ,... ............

; , , , ,... , ;

............

i i i

x t t x t t t

x t t x t t t

x t t x

x t t x t t t



 

   

  

  


 


 



 

 

Definition 1. We will say that the solution of the problem (1), (2), (3), (4) depends continuously on the initial 

condition and the switching functions, if: 
 

      00 0 , , 0 :const const T const t T                  

  * * * *

0 0 0 0 0 0, ,t R t t x D x x          

      * *, , , 1,2,...i i iC D R x x for x D i           

    * * * * * max

0 0 1 2 0 0 1 2 0; , , , ,... ; , , , ,... , 1,2,...ix t t x x t t x for t t T and t t i            , 

 

where  max *

0 0 0max ,t t t . 
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Note that the existence of “proximity” between the both solutions (of the problem considered and the 

corresponding perturbed problem) it not required in the pre-fixed neighbourhoods  , , 1,2,...i it t i    , at 

the switching moments of the basic problem. 
 

For convenience, we introduce the symbols: 

-   ; 0 , 1,2,...i ix D x i     , are switching hypersurfaces of the basic problem; 

-   * *; 0 , 1,2,...i ix D x i     , are switching hypersurfaces of the perturbed problem; 

-  0 0I x   for x D . The equality   0Id I x x   is valid; 

-      0 0 0 0 1 2 0, , ; , , , ,... ,t x t x t t x t t T      is a trajectory of the problem considered for 0t t T  ; 

-      * * * * * * * * *

0 0 0 0 1 2 0, , ; , , , ,... ,t x t x t t x t t T      is a trajectory of the perturbed problem if 0t t T  ; 

- .  and .,.  are the Euclidean norm and the dot product in
nR ; 

-    0 0;nB x x R x x      is   - neighbourhood of the point 0x . 
 

We introduce the following conditions: 
 

Н1. The functions , n

if C R D R     and there exists the positive constant Id IC  , such that for each point 

 ,t x R D   and 1,2,...i   the inequalities 
 

 ,i ff t x C  
 

are valid. 
 

Н2. The functions  1 ,i C D R   and there exists the positive constant gradC   such that for each point x D  

and 1,2,...i   the inequalities 
 

 i gradgrad x C    
 

 are valid. 
 

Н3. The functions , n

iI C D R    ,   :i iId I D    and there exists the positive constant  Id I
C
 

 such that 

for each point ix  and 1,2,...i   the inequalities 
 

        1 1i i i i Id I
Id I x x I x C


   

      
 

are valid. 
 

Н4. For each point  ,t x R D   and 1,2,...i   the inequalities 
 

       1 1 1. , , 0i i i iId I x grad x f t x      
 

are valid. 
 

Н5. There exists the positive constant 
,grad f

C


, such that for each point  ,t x R D   and  1,2,...i   the 

inequalities 
 

    ,
, ,i i grad f

grad x f t x C


   
 

are valid. 
 

Н6. For each point  0 0,t x R D   and 1,2,...i   there exists a unique solution of the initial problem for 

0t t  
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(12)    0 0, ,i

dx
f t x x t x

dt
  . 

 

Тtheorem 1. Let the conditions: Н1, Н2, Н3 and Н4 hold. 

Тhen: 

1. If the trajectory  0 0,t x  of the problem (1), (2), (3), (4) meets consecutively the switching hypersurfaces i  

and 1i , then for the corresponding switching moments it  and 1it  ,  the following estimate is valid: 
 

 
1 .

.

Id I

i i

grad f

C
t t

C C







    

 

2. If the trajectory  0 0,t x  meets all the switching hypersurfaces ,i  1,2,...i  , then the switching moments 

increase infinitely, i.e. lim i
i

t


  . 

Proof. Under the conditions Н4 the functions    1i iId I x    and    1 1, ,i igrad x f t x    are non-zero 

and they have opposite signs for any point  ,t x  R D  . Without loss of generality we assume that the 

following inequalities are valid: 
 

(13)    1 0,i iId I x x D      

and 

(14)       1 1, , 0, ,i igrad x f t x t x R D 

     . 
 

We consider the function  1 1: , it t R   , defined by the equality 
 

(15)  

  

     
  

1 0 0 1

1 0 0 1 1 0 0 1 1

1 0 0 1 1

0; , , ,...

; , , ,... ; , , ,... , ;

; , , ,... , .

i i i

i i i i i i i

i i i i

x t t x

t x t t x I x t t x t t

x t t x t t t

  

     

  



  

 

 



   


 

 

 

Under condition Н3 and inequality (13) it is true 
 

(16)            1 1 1 0 0 1 1 0 0 1; , , ,... 0; , , ,...i i i i i i i it t x t t x x t t x               

     1 0 0 1 1 0 0 1 10 ; , , ,... ; , , ,...i i i i i ix t t x I x t t x          

             1 0 0 1 1 1 0 0 1 1; , , ,... ; , , ,...i i i i i i i i Id I
Id I x t t x Id I x t t x C


         

     . 

 

On the other hand, using (14) and the conditions Н1 and Н2, we obtain consecutively: 
 

           1 1 1 0 0 1 1; , , ,... .i i i i i i i i

d d
t t t t x t x t t

dt dt
                                

     1

1 0 0 1 1 0 0 1

1

; , , ,... , ; , , ,...i i i ix t x f x t x
x
        

 



 

      2

1 0 0 1 1 0 0 1

2

; , , ,... , ; , , ,...i i i ix t x f x t x
x
        





 

......   

       1 0 0 1 1 0 0 1 1; , , ,... , ; , , ,... .n

i i i i i i

n

x t x f x t x t t
x
         


 
 

 

       1 0 0 1 1 0 0 1 1; , , ,... , , ; , , ,... .i i i i i igrad x t x f x t x t t            
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       1 0 0 1 1 0 0 1 1; , , ,... . , ; , , ,... .i i i i i igrad x t x f x t x t t            
 

  1. .grad f i iC C t t   . 
 

The following estimate is achieved from the inequality above  
 

    1 1

1

.
i i i i

grad f

t t t t
C C

     , 

 

whence, by means of the inequality (16), it follows that 
 

 
1 .

.

Id I

i i

grad f

C
t t

C C







    

 

If the trajectory of the basic problem meets infinitely many switching hypersurfaces, then using the previous 

estimate we achieve the conclusion  

        
1 1 2 1 0 0 0lim lim ... lim . .

.

Id I

i i i i i
i i i

grad f

C
t t t t t t t t i t

C C







  
  

             

The theorem is proved.  
 

Theorem 2. Let the following conditions are fulfilled: 
 

1. The conditions: Н1, Н2, Н3, Н4 and Н5 hold. 

2. The next inequality is correct for any point  ,t x R D    
 

     1 0 1 1. , , 0x grad x f t x   . 
 

Then the trajectory of the problem (1), (2), (3), (4) meets each of the hypersurfaces , 1,2,...i i   

Proof. First of all we will show that the trajectory of the basic problem meets the hypersurface 1 . One of the 

following two cases is valid from the condition 2: 
 

Сase 1.   1 0 0x  ,    1 1, , 0grad x f t x   for  ,t x R D  ; 

Сase 2.   1 0 0x  ,    1 1, , 0grad x f t x   for  ,t x R D  . 
 

Here we will discuss the first case. Another case can be considered in a similar way. Wе introduce the function 

    1 0 0; ,t x t t x   for 0t t . There is 
 

      0 1 0 0 0 1 0; , 0t x t t x x     . 
 

Under the condition Н5 it is satisfied 
 

 
d

t
dt
      1 0 0 1 0 0; , , , ; ,grad x t t x f t x t t x  

     1 0 0 1 0 0; , , , ; ,grad x t t x f t x t t x
,

0
grad f

C const


   . 

Using the facts  0 0t   and   0
d

t const
dt
    for 0t t , it follows that there exists a point 1 0t t , such that 

    1 1 0 0 1; , 0x t t x t   . This means that at the moment 1t  the trajectory  0 0,t x  meets the 

hypersurface 1 . Assume that the trajectory of the problem considered meets concequtively the hypersurfaces 

1 2, ,..., i    at the moments 1 2, ,..., it t t . Then we prove that  0 0,t x  meets the hypersurface 1i . Once again 

without loss of generality we assume that the inequalities (13) and (14) are valid. As in the previous theorem, we 

consider the function , defined by (15). We have 
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(17)        1 0 0 1 1 0 0 1 10 ; , , ,... ; , , ,...i i i i i i it x t t x I x t t x           

     1 0 0 1 1; , , ,... 0i i i iId I x t t x      . 

For it t  it is satisfied 
 

(18)     1 0 0 1; , , ,...i i

d d
t x t t x

dt dt
     

     1 0 0 1 1 0 0 1; , , ,... , , ; , , ,...i i i igrad x t t x f t x t t x       

     1 0 0 1 1 0 0 1; , , ,... , , ; , , ,...i i i igrad x t t x f t x t t x     
,

0
grad f

C const


   . 

 

From (17) and (18) it follows that there exist a point 1i it t   such that 
 

    1 1 1 0 0 10 ; , , ,... 0i i i it x t t x        . 
 

The interpretation of this equality is that the trajectory of the problem (1), (2), (3), (4) meets the hypersurface 

1i . The proof of the theorem follows by induction. 

 The theorem is proved.  

Using theorem 1 and condition Н6 we deduce the validity of the next theorem: 
 

Theorem 3. Let the conditions: Н1, Н2, Н3, Н4 and Н6 hold. 

Тhen the solution of the problem (1), (2), (3), (4) exists and it is unique for 0t t   . 
 

Theorem 4. The following conditions are fulfilled: 

1. The conditions: Н1, Н2, Н3, Н4 and Н6 hold. 

2. For each point  ,t x R D   the following inequality is true 
 

     1 0 1 1. , , 0x grad x f t x   . 
 

3. Тhe trajectory  0 0,t x  of the problem (1), (2), (3), (4) meets the hypersurface 1  at the moment 1t . Тhen 

 0 :const    

  * * * *

0 0 0 0 0 0, ,t R t t x D x x          

      * *

1 1 1, ,C D R x x for x D         

 * * * *

0 0 1,t x   . 
 

Proof. Under the condition 2 the following inequalities take place: 
 

(19)            1 0 1 0 0 0 1 0 0 0x x I x Id I x       , 

     1 1, , 0, ,grad x f t x t x R D    . 
 

Assume that the next inequalities are valid: 
 

(20)        1 0 1 0 0 0; , 0x x t t x   ,   1 1 0 0; , 0x t t x    

and   1 0 0; , 0x t t x   for 0 1t t t  . 
 

The case  1 0 0x   is considered in the same way. Assume that for any 0t t  there is   1 0 0; , 0x t t x  . 

Then 1t  is a point of maximum of the function     1 0 0; ,t x t t x  . It is satisfied 

          1 1 1 0 0 1 1 0 0 1 1 1 0 00 ; , ; , , , ; ,
d d

t x t t x grad x t t x f t x t t x
dt dt
     . 

This equality contradicts to the second of the inequalities (19). Therefore there must be a point 1t   such that 
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    1 0 0; , 0x t x     . 

From the inequality  1 0 0x   and the continuity of the function 1  it follows that there exists a positive 

constant '  such that for any point  ' 0x B x  the inequality  1 0x   is satisfied. By analogy, using the 

inequality   1 0 0; , 0x t x    and the continuity of the function 1 , we obtain the existence of the positive 

constant "  such that for each point   " 0 0; ,x B x t x   the inequality  1 0x   is valid. We denote 
 

          1 ' 0 1 " 0 0' min , , " min , ; ,x x B x x x B x t x         . 
 

In accordance with the classical theorem of continuous dependence of the solutions of the systems differential 

equations with invariable structure and without impulses on the initial condition (for brevity is called further 

Classical theorem for continuous dependence) it follows: 
 

 , 0 ' :const        * * * *

0 0 0 0 0 0, ,t R t t x D x x          

    * * * max

0 0 0 0 1; , ; , "x t t x x t t x for t t      . 
 

We assume also that for the arbitrary chosen continuous function 
*

1 : D R   is valid in adition the inequality 
 

     *

1 1 min ', "x x      for x D  . 
 

For the part of the trajectory  * * *

0 0,t x , locked between the points 
*

0x  and  * * *

0 0; ,x t x , we obtain the following 

restriction: 
 

1. For the initial point 
*

0x  it is satisfied 
 

 * * *

0 0 0 0 0 ' 0'x x x x x B x        , 
 

which yields 
 

(21)        * * * * * *

1 0 1 0 1 0 1 0x x x x       

     

     

* * * *

1 0 1 0 1 0

* * * *

1 0 1 0 1 0 ' ' 0

x x x

x x x

  

  

  

      
. 

 

2. For  the „ final ” point  * * *

0 0; ,x t x  it is valid 
 

   * * * max

0 0 0 0 1; , ; , "x t t x x t t x for t t      

        * * * * * *

0 0 0 0 0 0 " 0 0; , ; , " ; , ; , .x t x x t x x t x B x t x          
 

As a result we ascertain that 
 

(22)               * * * * * * * * * * * * * *

1 0 0 1 0 0 1 0 0 1 0 0; , ; , ; , ; ,x t x x t x x t x x t x           

        * * * * * * * * * *

1 0 0 1 0 0 1 0 0; , ; , ; , " " 0x t x x t x x t x            . 

 

Under the conditions (21) and (22) for the function     * * * *

1 0 0; ,t x t t x   we find out 
 

           * * * * * * * * * * * *

0 1 0 0 0 1 0 1 0 0; , 0, ; , 0t x t t x x x t x           . 
 

Using the continuity of the function   we deduce that there exists a point 
* * *

1 0 1,t t t   , such that  
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    * * * * * *

1 1 1 0 00 ; , 0t x t t x    . 
 

The meaning of the last equality is that the trajectory  * * *

0 0,t x  of the perturbed problem (8), (9), (10), (11) 

meets the hypersurface
*

1  at the moment 
*

1t . The theorem is proved.  
 

Theorem 5. The following conditions are fulfilled: 

1. The conditions: Н1, Н2, Н3, Н4 and Н6 hold. 

2. For each point  ,t x R D   the next inequality is valid 
 

     1 0 1 1. , , 0x grad x f t x   . 
 

3. Тhe trajectory  0 0,t x  of the problem (1), (2), (3), (4) meets the hypersurface 1  at the moment 1t . Тhen 
 

    0 0 :const          

  * * * *

0 0 0 0 0 0, ,t R t t x D x x          

      * *

1 1 1, ,C D R x x for x D         

*

1 1t t    . 
 

Proof. Using the Theorem 4 we find out that there exists ' 0   such that 
 

  * * * *

0 0 0 0 0 0, ' , 't R t t x D x x          

      * *

1 1 1, , 'C D R x x for x D         
 

whence it follows that the trajectory  * * *

0 0,t x  of the problem (8), (9), (10), (11) intercepts the perturbed 

hypersurface
*

1  at the moment 
*

1t . Under the condition 2 of theorem 5 we assume that the inequalities (20) are 

valid. Let   be an arbitrary constant and  1 0 2 10 min ,t t t t    . Then the following inequalities are valid: 
 

  1 0 0; , 0x t t x   for 0 1t t t       and      1 1 0 0; , 0x t t x   . 
 

We introduce the positive constants: 
 

   1 0 0 0 1' min ; , ,x t t x t t t       and   1 1 0 0" ; ,x t t x    . 
 

From the first of both inequalities above for 1t t    it follows that 
 

(23)   1 1 0 0; , 'x t t x    . 
 

Using the classical theorem of continuous dependence it follows: 
 

(24)      " , 0 " ' :const        * * * *

0 0 0 0 0 0, " , "t R t t x D x x          

     * * * max

0 0 0 0 1 1

1
; , ; , min ', "

2 grad

x t t x x t t x for t t t
C 

        . 

Let the function  *

1 ,C D R   and it satisfies 
 

(25)      *

1 1

1
min ', "

2
x x for x D      . 

Under condition Н2 the gradients of the functions , 1,2,...i i  , are bounded above. Hence, the following 

inequalities are valid: 

   ' " ' " , ', " , 1,2,..i i gradx x C x x x x D i      . 
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Using the estimates (23), (24) and (25), we obtain: 
 

(26)              * * * * * * * * * * *

1 1 0 0 1 1 0 0 1 1 0 0; , ; , ; ,x t t x x t t x x t t x           

        * * *

1 1 0 0 1 1 0 0 1 1 0 0; , ; , ; ,x t t x x t t x x t t x                   

     * * * * * * *

1 1 0 0 1 1 0 0; , ; ,x t t x x t t x        

      * * *

1 0 0 1 0 0 1 1 0 0; , ; , ; ,gradC x t t x x t t x x t t x           

1 1
' ' ' 0

2 2
grad

grad

C
C





       . 

 

On the other hand, we have 
 

(27)              * * * * * * * * * * *

1 1 0 0 1 1 0 0 1 1 0 0; , ; , ; ,x t t x x t t x x t t x           

        * * *

1 1 0 0 1 1 0 0 1 1 0 0; , ; , ; ,x t t x x t t x x t t x            

     * * * * * * *

1 1 0 0 1 1 0 0; , ; ,x t t x x t t x        

      * * *

1 0 0 1 0 0 1 1 0 0; , ; , ; ,gradC x t t x x t t x x t t x           

1 1
" " " 0

2 2
grad

grad

C
C





        . 

 

We rewrite (26) and (27) in a more compact form:  1 0t    and  1 0t    respectively. From the 

continuity of the function  t   * * * *

1 0 0; ,x t t x  for 1 1t t t      it follows that there exists a point 
*

1t , 
 

* * *

1 1 1 1 1 1 1t t t t t t t                , 
 

such that 
 

    * * * * * *

1 1 1 0 0; , 0t x t t x   . 
 

The last equality means that the trajectory  * * *

0 0,t x  of the perturbed problem intercepts the hypersurface
*

1  at 

the moment  
*

1t , for which it is satisfied the inequality 
*

1 1t t   . The theorem is proved.  
 

3. Main Results 
 

The main result is contained in the following theorem. 
 

Theorem 6. Let the conditions: Н1, Н2, Н3, Н4 and Н6 hold. 

Тhen the solution of the problem (1), (2), (3), (4) depends continuously on the initial condition and the switching 

functions. 

Proof. Let   and   be the arbitrary positive constants and 0T t . The following cases are posible: 
 

Сase 1. The trajectory  0 0,t x  of the problem (1), (2), (3), (4) meets no one of the switching hypersurfaces for 

0t t T  . In this case the assertation of the theorem follows from the classical theorem for continuous 

dependence. 
 

Сase 2. The trajectory  0 0,t x  meets only one hypersurface -  1  for 0t t T  . Тhen it is satisfied: 
 

2.1. According to the theorem 4 there are 
 

 0 :i const     * * * *

0 0 0 0 0 0, ,i it R t t x D x x          
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      * *

1 1 1, , iC D x x for x D           * * * *

0 0 1,t x   , 

i.e. the trajectory  * * *

0 0,t x  meets the switching hypersurface 
*

1  at the moment 
*

1t ; 

2.2. According to the theorem 5 it is satisfied: 

  , 0 0 :iii iii ii const           * * * *

0 0 0 0 0 0, ,ii iit R t t x D x x          

      * *

1 1 1, , iiC D R x x for x D         
*

1 1

iiit t    , 

where 
iii  we will specify later. From the last inequality it follows that 

*

1 1t t   ; 
 

2.3. From the classical theorem for continuous dependence the following is true 
 

  , 0 0 :v v iv const           * * * *

0 0 0 0 0 0, ,iv ivt R t t x D x x          

   * * * max min

0 0 0 0 0 1; , ; , ,vx t t x x t t x t t t       , 

 

where  min *

1 1 1min ,t t t . The constant 
v  we will specify later; 

2.4. Let assume that 
min

1 1t t  and 
max *

1 1t t . The considerations in the second case are similar. Using the condition 

Н1 we deduce that 
 

          
*
1

1

* * * * * * * * * *

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0; , ; , ; , , ; , ; ,
t

t
x t t x x t t x x t t x f x t x d x t t x       

  
*
1

1

* * * *

1 0 0 1 1, ; ,
t

v v v iii

f f
t

f x t x d C t t C             . 

2.5. From the continuity of function 1I  and taking into account the previous paragraph it follows that 

  0 0, 0 :vi iii vconst           * * * *

1 0 0 1 0 00; , 0; ,x t t x x t t x    

                    * * * * * * * *

1 0 0 1 0 0 1 1 0 0 1 1 0 0; , ; , ; , ; , vix t t x x t t x I x t t x I x t t x      , 

where the constant 
vi  we will determine later. 

 

2.6. Again with the classical theorem for continuous dependence we obtain 

  0 0 :iii vi      

        * * * * * * * * * *

1 1 1 1 0 0 1 0 0 1 0 0, 0; , , 0; , 0; ,iii vit t t x t t x x t t x x t t x           

   * * * * max

0 0 1 0 0 1 1; , , ; , , ,x t t x x t t x t t T       . 

 

2.7. We perform the specifying of the constants in the following sequence: 

2.7.1. From 2.1 wе specify 
i ; 

2.7.2. From 2.6 wе specify 
iii  and 

vi ; 

2.7.3. From 2.5 we determine 
v  and futher refine 

iii ; 

2.7.4. From 2.3 we find 
iv ; 

2.7.5. From 2.2 futher refine  iii iii    and determine 
ii . 

2.8. Let  min ,...,i vi   . The obtained result can be sumarized as: 

  * * * *

0 0 0 0 0 0, ,t R t t x D x x          

      * *

1 1 1, ,C D R x x for x D         
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Whence it follows: 
 

2.8.1.    * * * max min

0 0 0 0 0 1; , ; , ,x t t x x t t x t t t     (see 2.3); 

2.8.2.    * * * * max

0 0 1 0 0 1 1; , , ; , , ,x t t x x t t x t t T       (see 2.6); 

2.8.3. 
* max min

1 1 1 1t t t t      (see 2.2). 
 

We rewrite the inequalities 2.8.1, 2.8.2 and 2.8.3 more compact in the form: 
 

   * * * * * max

0 0 1 2 0 0 1 2 0 1; , , , ,... ; , , , ,...x t t x x t t x for t t T and t t           . 

 

The theorem in this case is proved. 
 

Сase 3. Тhe trajectory of the fundamental problem meets finite number hypersurfaces for 0t t T  . We assume 

that the following inequalities are fulfilled for the moments of these meetings: 
 

0 1 2 1... ...k kt t t t T t         
 

We introduce the following notations: 
 

     max

0 0 1 1 2 2 2 3 1 1

1 1 1
, , ,..., ,

2 2 2
k k kT t T t t T t t T t t         kT T . 

 

Under the previous case, we have: 
 

3.1.   2 2 1 1, 0 , 0 :            

  * * * *

0 0 0 1 0 0 0 1, ,t R t t x D x x          

      * *

1 1 1 1, ,C D R x x for x D         

   * * * min

0 0 0 0 2 0 1; , ; , , ;x t t x x t t x T t t      

   * * * * min max min

0 0 1 0 0 1 2 1 1 1 1; , , ; , , ,x t t x x t t x t t T and t t         . 
 

3.2.   3 3 2 2, 0 , 0 :            

      * * * * * * * *

0 0 1 1 0 0 1 1 0 0 1 2; , , , ; , , ; , ,x t t x x T t x x T t x       

      * *

2 2 2 2, ,C D R x x for x D         

   * * * * min

0 0 1 0 0 1 3 1 2; , , ; , , , ;x t t x x t t x T t t        

   * * * * * min max min

0 0 1 2 0 0 1 2 3 2 2 2 2; , , , ; , , , ,x t t x x t t x t t T and t t           . 

...................................................................................... 
 

3.к-1.   1 1, 0 , 0 :k k k k             

      * * * * * * * * * *

0 0 1 2 1 0 0 1 2 1 0 0 1 2 1; , , ,..., , ; , , ,..., ; , , ,...,k k k kx t t x x T t x x T t x             

      * *

1 1 1 1, ,k k k kC D R x x for x D            

   * * * * * min

0 0 1 2 0 0 1 2 2 1; , , ,..., ; , , ,..., , ;k k k k kx t t x x t t x T t t             

   * * * * * min max min

0 0 1 1 0 0 1 1 1 1 1 1; , , ,..., ; , , ,..., ,k k k k k k kx t t x x t t x t t T and t t                . 

 

3.к.  , 0k k     : 
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      * * * * * * * * * *

0 0 1 1 1 0 0 1 1 1 0 0 1 1; , , ,..., , ; , , ,..., ; , , ,...,k k k kx t t x x T t x x T t x            

      * *, ,k k k kC D R x x for x D         

   * * * * * min

0 0 1 1 0 0 1 1 1; , , ,..., ; , , ,..., , ;k k k kx t t x x t t x T t t            

   * * * * * min max min

0 0 1 0 0 1; , , ,..., ; , , ,..., ,k k k k k kx t t x x t t x t t T and t t           . 

 

The constants , 1,2,...,i i k  , we define in the reverse order: first, we identify k , after that we determine 1k   

etc. Finally, we find 1 . We substitute 1  . The results of the paragraphs 3.1 ÷ 3.к can be summarized as: 
 

  * * * *

0 0 0 0 0 0, ,t R t t x D x x          

      * *, , , 1,2,...i i iC D R x x for x D i           

    * * * * * max

0 0 1 2 0 0 1 2 0; , , , ,... ; , , , ,... , 1,2,... .ix t t x x t t x for t t T and t t i             

 

The theorem is proved in this case. 
 

Сase 4. The trajectory of the problem (1), (2), (3), (4) meets infinity many switching hypersurfaces for 0t t T  . 

The following inequalities 0 1 2 ...t t t T     are valid in this case. The last inequalities contradict to the second 

statement of the theorem 1. Therefore, this case is impossible. 

The theorem is proved.  
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