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Abstract 
 

The need for lateral travel can arise in a simple projectile either due to the target moving or to a transverse 

external force that moves the projectile.  By the use of internal moving parts, a force in the lateral direction can 

be created, thus changing the flight trajectory of the projectile. Therefore, the possibility of the use of an internal 
gyroscopic force derivedfrom a rotating disk could be used to counteract such activity.  In this study, three 

internal swing masses attached at the end of a massless rod are located on the points of an equilateral triangle 

centered about the major axis of the projectile.  The rotation of mass generates a normal acceleration and a 
subsequent force and torque upon the projectile.  The force from combined movements of the masses can be used, 

to a small degree, to control the movement of the projectile. In this study, a model for this movement is derived 

mathematically and simulated on the computer using a developed code.  For the cases examined, the projectile 

moves cyclically about the axis or deviated with a relatively even slope away from the axis.  With these models, a 
parametric study is conducted with predetermined changes.The parametric study is focused on actuating each 

mass in sequence or changing the initial weight of the mass and starting position in relation to the projectile. A 

computer program is createdin MATLAB for the developed model and the equations of motionare generated and 
solved numerically to simulate the flight of the projectile. The results from the simulation for the project are 

compared for differences in the projectile physical conditions. The resultsof this study show that the projectile 

could move in a lateral directionin a controlled manner.  But the overall movement is minimal when compared to 
the size of the projectile or the distance traveled.  While this application may not be suited for use in small 

projectiles, it may hold merit for use with larger craft or re-entry vehicles. 
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NOMENCLATURE 

𝑎 Scalar acceleration 

𝑎  Acceleration vector 

𝑎 𝑑  Acceleration of the disk relative to the world 

𝑎 𝑝  Acceleration vector of projectile relative to the world 

𝑐𝑣  Viscous damping 

𝐹 Scalar force 

𝐹  Acceleration vector 

𝐹 𝑚𝑎𝑠𝑠  Force due to the rotating mass (sub-notation indicates which one) 

𝐼 Moment of inertia 

𝑚 Total mass of projectile 

𝑚𝑑  Mass of rotating weight (sub-notation indicates which one) 

𝑚𝑝  Mass of projectile minus moving parts 

𝑚𝑡  Mass of translating Weight 

𝑝 Point of rotation of the mass (sub-notation indicates which one) 

𝑟 Radius of rotating masses’ armrelative to the projectile (sub-notation 

indicates which one)  

𝑟  Radius vector of rotating masses’ arm relative to the projectile (sub-

notation indicates which one) 

𝑟 𝑝  Radius vector of the projectile relative to the world’s origin  
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𝑅 Radius of the projectile 

rpm Rotations per minute 

𝑣 Scalar velocity 

𝑣  Velocity vector 

𝛼 Scalar angular acceleration 

𝛼  Angular acceleration vector 

𝛼 𝑑  Vector angular acceleration of the mass relative to the world 

𝛼 𝑝  Vector angular acceleration of the projectile relative to the world 

𝜏 Scalar torque 

𝜏  Torque vector 

𝜔 Scalar angular Velocity 

𝜔    Vector angular velocity 

All units are presumed to be in the metric system unless noted. 
 

1.  INTRODUCTION 
 

From medieval times with trebuchets destroying castles to launching modern satellite into orbit, the study of 
ballistics has been conducted to improve the flight course and end results.  Early studies of control were done by 

means of changing the initial physical conditions.  As technology developed, more study and research has been 

conducted in active control of the projectile during flight.  The direct idea for control of the flight of a simple 
bullet in the lateral direction emerges from personal experience of watching bullets err from the desired target due 

to the influenceof the wind.  This idea of a single internal rotating mass is explored by Frost and Costello [1].  

Several other researchers have explored different means of controlling and calculating trajectory.Control of a 

missile can be accomplished externally by fins and engines in flight.  Internally, a projectile can be controlled by 
translating and rotating masses.The idea of a translating mass is that a weight is contained in a linear cavity within 

the projectile.  The mass then slides within the cavity, creating a change of the center of gravity and conversely 

the angle of attack.  Another version of the translating mass concept is attaching the mass to a rod of constant 
length which then rotates about the major axis of the projectile [2].With the use of several of these rods, the center 

of gravity can be changed, and thus also changing the angle of attack. 
 

The concept of a translating mass was explored by several investigators.  According to Rogers and Costello [3], 

the trajectory changes due to a moving mass from the dynamic coupling between the two bodies.  The equation 

that was found for the force acting from the translating mass in Equation (1) was converted from the frequency 
domain to the time domain [3]. When the mass was oscillated for a finned missile, the missile deviated in the 

lateral direction. 

𝐹𝐼𝑛𝑝𝑢𝑡 =  
𝑚𝑝𝑚𝑡

𝑚
−𝑚𝑡 𝑎 +  𝑐𝑣 − 2𝑚𝑡𝜔𝑛 𝑣 + 𝑚𝑡𝜔𝑛

2 
(1)  

The mass in this parametric study was offset from the center of gravity in a slot perpendicular to the major axis 

and oscillated.  As was expected, an increase was found in the swerve as the mass moved away from the center of 

gravity.  It was found as the slot moved away from the center of gravity, the control authority increased 
proportionally.  If the slot is perpendicular to the major axis, the control of the missile is increased during the 

flight [4].  This is due to fact that the stability of the missile during launch can be increase,therefore reducing 

launch perturbations.  Yet, when the missile is inflight, the stability can be reduced, giving greater control of the 

path of the missile.  This effect indicates that as the missile with translating mass reaches the target, as opposed to 
a conventional missile just shy of reaching the target. 
 

Changing the center of gravityby slowly rotating weights affixed about the major axis changed the angle of attack 
and conversely the flight path, was studied by Byrne [2]. He observed that while a minimum of two weights could 

be used, three or more weights require less drastic movement [2].  The base equation for the resultant center of 

mass in the polar coordinates was derived toEquation (2), and converted to Cartesian coordinate in Equation (3). 

𝑅𝑒𝑞 𝑒
𝑖𝜃𝑒𝑞 =

𝑅

3
 𝑒𝑖𝜃1 + 𝑒𝑖𝜃2 + 𝑒𝑖𝜃3  

(2)  

𝑅𝑒𝑞  
cos 𝜃𝑒𝑞
sin 𝜃𝑒𝑞

 =
𝑅

3
 
cos 𝜃1 + cos 𝜃2 + cos 𝜃3

sin𝜃1 + sin 𝜃2 + sin 𝜃3
  

(3)  
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The application of the translating mass is explored for possible use for reentry from orbit.   In these figures, as the 

vehicle descended, the internal moving masses changed the direction of flight and directed the vehicle to the 
desired point of impact.  
 

The notion of a single internal rotating disk was considered by Frost and Costello in several of their studies [1,5]. 

They found that, as the offset of the mass from the center of gravity increased, so also did the control.  The 
equation of motion for the disk was found in Equation (4) and for the projectile body in Equation (5).  Combining 

these together givesEquation (6), which is the equation of motion for both the projectile and the rotating disk. 

𝑚𝑑𝑎 𝑑 = 𝐹 𝑅 + 𝑊    𝑑  (4)  

𝑚𝑝𝑎 𝑃 = −𝐹 𝑅 + 𝑊    𝑃 + 𝐹 𝐴 (5)  

𝑚𝑝𝑎 𝑃 + 𝑚𝐷𝑎 𝑑 = 𝑊    𝑑𝐷 + 𝑊    𝑃 + 𝐹 𝐴 (6)  

From these equations, a control system for the projectile can be developed.  The movement in the lateral direction 
was demonstratedwith the two body systems containing the rotating disk.  This concept of a single rotating disk is 

expanded in the currentstudy in a parametric study of three rotating disks, and the effect of the rotation on the 

lateral movement of the projectile is investigated. 
 

The objective of this current studyis thus to conduct a parametric study on the concept of controlling a projectile 

by the controlled spinning of one to three internal masses.  The masses are mounted atop mass-less rods.  These 

rods are then pinned on the opposite end to the main body of the projectile, equally distanced from each other and 
the major axis of the projectile.  In the parametric study, the mass,the starting orientation, and the angular rotation 

of the disks are systematically varied, and the results are examined andcompared with one another.  From these 

results, recommendations for possible further studies and improvement are given. 
 

2.  METHODOLOGY 
 

In this study, mathematical models of different projectiles are developed and their corresponding equations of 

motion are derived and solved numerically using the MATLAB computer program.A base solid core projectile 

model is first examined, after which a concept projectile model with three rotating weights is investigated.  The 
entire concept projectile system will have nine degrees-of-freedom, six for the projectile and one for each rotating 

disk.  Controllable inputs into the model are initial linear and angular velocity and acceleration of the projectile 

and disk.  After the projectile is in flight, control will be established by the changing rotational velocity of the 

disks, which will in turn change the course of flight.  Other force beyond direct control and acting upon the 
projectile during flight beyond direct control will be drag and gravity.  
 

2.1 Physical Projectile Properties 
 

The model analyzed is of aprojectile20 mm in diameter.  The shape of the projectile is a simple,cone shape for the 
head attached to a cylinder.  Figure 1 shows the sketch and computer model of the projectile; the major axis is 

equivalent to the x-axis of the system in all subsequent references.  The mass of the model considered is between 

130 gm and 400 gm depending on conditions.  The results from the following study, however, can be sub 

sequentially scaled up for larger models because equations of motion are linear with respect to masses, rod 
lengths for the rotating mass, and linear velocity.  The nonlinear part of the equation of motion is the angular 

velocity of the mass, which has an exponential effect, and the angle of the mass rod which changes 

trigonometrically. 
 

2.2 Solid Core Projectile Model 
 

The traditional model is a projectile of a solid core with no moving parts.  It is assumed the greatest force acting 

upon it during it flight is gravity and the path will parabolic due to the acceleration.  The environment considered 

is a simple world of six-degrees-of freedom.  Studies have been conducted on predicting the flight path of a 
projectile and simplifying the equations to linear forms [5,6]. 
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(a)                                                                 (b) 

Figure 1. Solid CoreProjectile: 
 

(a) Sketch of the Projectile,                                                 (b) Computer Model of the Projectile. 
 

The bases of the mathematic model is the Newton’s first law, 𝐹 = 𝑚𝑎 .The components of 𝐹  in this case are 

gravity and force induced from flight, the largest of which, in this case, is drag.For the simple projectile, 𝐹  is 
equal to the sum of the drag forces, which is given in equation (7), and gravity, which is acting in the direction, 

given in Equation(8), where𝜌 is the density of the air; 𝐶𝑑  is the drag coefficient; 𝐴 is the cross sectional area; and 

𝜃 is the angle of the major axis relative to direction of gravity. 

𝐹 𝑑𝑟𝑎𝑔 = −
1

2
𝜌 𝑣  2𝐶𝑑𝐴𝑣  

(7)  

𝐹 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =  
0

sin𝜃 𝑔
cos 𝜃 𝑔

  
(8)  

Combining these forces in the equation of motion, Equation (9) is derived and gives the basic parabolic arc for a 

projectile. 

𝐹 𝑑𝑟𝑎𝑔 + 𝐹 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑎  (9)  

For verification, the dynamics of the solid core projectile model was first simulated using the MATLAB program 
developed. The construction of the model was a cylinder with a cone mated to the top.  The model is initially at 

point zero with the bottom of the cylinder located thus and the major axis passing through the point.  Because all 

forces are acting through the center of gravity, torque will not be induced or need to be accounted for.  The 

gravity force vector was angled to simulate a 15-degree tilt and initial velocity was set to 800 m/s.  The flight of 
the projectile perfomed as expected with the projectile traveling in a parobalic arc, as shown in Figure 2. 
 

 
Figure 2. Solid Core Projectile Flight of Elevation versus Distance Traveled. 

 

2.3  Concept Projectile Model 
 

The concept of the new model, as shown in Figure 3, is to incorporate three weights that could be rotated about a 

point within the projectile and cause a deviation in the flight path, specifically in the lateral direction.  The 

rotation points are the tips of an equilateral triangle centered about the major axis of the projectile, as shown in the 
figure.   
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Letting𝑟 be the maximum length of the rotation mass such that2𝑟 is one of the legs of the equilateral triangle.  

Then the position of the rotation points are (0,
2 3

3
𝑟), (−𝑟,−

 3

3
𝑟), and (𝑟, −

 3

3
𝑟)respectively, with the origin 

located in the center of the triangle.  The minimum radius for the projectile, 𝑅 , in terms of 𝑟 , is shown in 

Equation(10). 

𝑅 =  
2 3

3
+ 1 𝑟 ≈ 2.155𝑟 

(10)  

 
(a)                                                               (b) 

Figure 3.  Concept Projectile: 
(a) CAD Projectile Model,                                                      (b) Cross Section Rotation Points. 

 

The idea is when the masses are rotated the gyroscopic force generated will cause the projectile to deviate.  By the 

use of three masses, the direction of the deflection can be controlled in the lateral direction.  The model for this 

system is composed of three rotating masses represented as cylinders connected to mass-less rods which rotated 

about a point. The three rotation points were located at the peaks of an equilateral triangle with the center of the 
triangle coinciding with the major axis of the projectile.  The parameters for design were segment lengths, masses 

of each part, and the initial starting angular and linear velocities.  By the use of parameters, it was possible for the 

model to be quickly changed to simulate the scenario changes.  The changes made to the model were the 
variations of initial angular velocities, mass ratios, and phases of the weights’ positions to analyze the effect of the 

change down-range in the lateral direction.   
 

The equation for motion of the projectile was derived from equations from several studies and modified for this 

study [1,6,7].  Combining Equations (7) and (8) with Equation (11) for each mass gives Equation (12), which 

gives the overall force equation for the system.  Thus, the overall encompassing equations for force is 

𝐹 𝑚𝑎𝑠𝑠 = 𝑚𝑑(𝑎 𝑝 + 𝛼 𝑝 × 𝑟 𝑃 + 𝜔   𝑝 ×  𝜔   𝑝 × 𝑟 𝑃 + 𝛼 𝑑 × 𝑟 𝐶𝐷 + 𝜔   𝑑 ×  𝜔   𝑑 × 𝑟  ) (11)  

𝑚𝑝 𝑎 𝑝 + 𝜔   𝑝 × 𝑣 𝑝 +  (𝑚𝑑𝑖(𝑎 𝑝 + 𝛼 𝑝 × 𝑟 𝑃𝐶,𝑖 + 𝜔   𝑝 ×  𝜔   𝑝 × 𝑟 𝑝,𝑖 + 𝛼 𝑑,𝑖 ×

𝑛

𝑖=1

𝑟 𝑖 + 𝜔   𝑑,𝑖

×  𝜔   𝑑′𝑖 × 𝑟 𝑖 ) =  𝑚𝑝 +  𝑚𝑑𝑖

𝑛

𝑖=1

 ∗ 𝑔 −
1

8
∗ 𝐶𝑑 ∗ 𝜌 ∗  𝑣 𝑝

𝑖

 
2

𝜋𝑑2𝑣  

(12)  

 

Torque is created by the offset of the rotation point from the major axis, with the resulting force from the normal 

acceleration upon that point as given in Equation (11).  Using 𝜏 = 𝐼𝛼 , the angular acceleration of the projectile 

can be found, and conversely the angular velocity of the project can be found [8].  This rotation of the projectile 
changes the angle of the rodof the rotating disk and the location of the point of rotation with respect to the ground 

and subsequently the direction of force that is created by the disk on the projectile. 

𝜏 =  𝑝 × 𝐹 𝑚𝑎𝑠𝑠 𝑖

3

𝑖=1

 

(13)  

The polar moment of inertia about the major axis was estimated by treating the main body of the projectile like a 

solid cylinder and the masses as points, giving Equation (14).  With the moment of inertia and torque, the angular 

velocity of the projectile was found along with the subsequent changes in the location of rotation points and arms. 
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𝐼 =
1

2
𝑚𝑝𝑅

2 +  𝑚𝑑  𝑟 𝑖 + 𝑝𝑖  
2

3

𝑖=1

 

(14)  

 

Using the equations discussed above, a simulation program was created in MATLAB to find velocity and 

position, both linear and angular, of the projectile and the disk.  This was primarily accomplished by breaking 

Equations (11) and (12) in to sub-equations and solving for the parts for ease and cleanness of code.  The 
dynamics equations of motion were numerically solved using the Euler method with a given step-size and 

checking the accuracy of the method with Richardson error estimate.  The Runge-Kutta fourth-order with fifth-

order correction (ode45 in MATLAB) with adjustable step-size was also utilized for further checking the accuracy 

of the numerical solutions obtained.  The structure of the program was loops within loops.  For each major loop, 
one of the initial starting conditions was changed.  These variables were the disk mass, initial phase, and initial 

angular velocity. The results of position and velocity of the disks and projectile would then be stored in a file for 

later recall to be analyzed either manually or by a sub-program. 
 

3.  RESULTS FROM CONCEPT MODEL PARAMETRIC STUDY 
 

The model was subjected to a series of parametric changes to determine what parameters induced the greatest 

deviations of the projectile in the lateral directions.  The concept is if a deviation can be induced to change the 
flight path from the spinning weight; then conversely, the same force can be used to correct for an external 

random force upon the projectile.  Therefore, the deviation of the path of the projectile in the lateral direction was 

observed compared.The parametric study change occurred in the order presented in Figure 4.  First, the phase or 
initial position of the mass was set according to the parameter being examined. The mass was then either changed 

to one of three possible weights or remained the same while the angular velocity possibilities were cycled.  The 

angular velocity of the masses were changed to reflect a given scenario represented by ωN, where N is a letter 
between A and F designating what conditions are occurring, as seen in the following tables.  The results from 

these changes are recorded in spreadsheet form.  The results are plotted and then compared. 
 

 
Figure 4. Parametric Study Flow Chart. 

 

 

 

 

 

 

Phase

•Change Initial Position of the Swinging Weights

•Phase 1 – All masses point upwards

•Phase 2 – All masses are evenly balanced about the major axis

Mass

•Change or Keep the Mass Settings

•Mass weights 10 gr, 50 gr, or 100 gr

ωN

•Change the Angular Velocity of the Masses

•The angular velocity of the mass is set to a predetermined value based on the preceeding chart

Simulation

Results

•Run Simulation on Designated Program

•Record Results for Analysis
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Table 1.   ω Conditions and Diagrams. 
 

 
ωA 

 
ωB 

 
ωC 

 
ωD 

 
ωE 

 
ωF 

 

3.1  Parametric ω Change Study 
 

As stated, the angular velocities of the masses were changed to one of six conditions designated by a letter.    In 

Table 1, the order of what masses are rotated for a given conditions is shown.  The first case, 𝜔A, all the masses 

are held at a standstill and there is no deviation lateral of the projectile.  In 𝜔B, the top mass is rotated at a 
constant velocity relative to the projectile.  This rotation causes the projectile to both rotate and move because of 

the induced force.  In cases 𝜔C and 𝜔D, the other two masses are spun sequentially.  In the next case, 𝜔E, the 

two lower masses are spun at half the velocity of the upper mass and in the opposite direction.  In 𝜔F, mass 3 is at 

half the angular velocity of 𝜔B and in the opposite direction. 
 

3.2  Parametric Weight Change Study 
 

The weight of the masses was changed a total of four times, as shown in Tables 2, 3, and 4, with the other 

parameters changing for simulations to be compared.  The mass of the non-moving part of the projectile was held 

at 100 grams equally distributed about the center of mass.  The lowest ratio of weight of the rotating masses to 
overall weight is 0.23 and the largest is 0.75. 
 

Table 2.Mass Conditions 1. 
 

𝜔Condition 𝜔1(rpm) 𝜔2(rpm) 𝜔3(rpm) 

𝜔A 0 0 0 

𝜔B 167 0 0 

𝜔C 167 167 0 

𝜔D 167 167 167 

𝜔E 167 -83.3 -83.3 

𝜔F 0 0 -83.3 

𝜃1 = 𝜃2 = 𝜃3 = 90° 

𝑚𝑑,1 = 𝑚𝑑,2 = 𝑚𝑑,3 = 10 𝑔𝑟 
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Table 3.Mass Conditions 2. 
 

𝜔Condition 𝜔1(rpm) 𝜔2(rpm) 𝜔3(rpm) 

𝜔A 0 0 0 

𝜔B 167 0 0 

𝜔C 167 167 0 

𝜔D 167 167 167 

𝜔E 167 -83.3 -83.3 

𝜔F 0 0 -83.3 

𝜃1 = 𝜃2 = 𝜃3 = 90° 

𝑚𝑑,1 = 𝑚𝑑,2 = 𝑚𝑑,3 = 50 𝑔𝑟 
 

Table 4.Mass Conditions 3. 
 

𝜔Condition 𝜔1(rpm) 𝜔2(rpm) 𝜔3(rpm) 

𝜔A 0 0 0 

𝜔B 167 0 0 

𝜔C 167 167 0 

𝜔D 167 167 167 

𝜔E 167 -83.3 -83.3 

𝜔F 0 0 -83.3 

𝜃1 = 𝜃2 = 𝜃3 = 90° 

𝑚𝑑,1 = 𝑚𝑑,2 = 𝑚𝑑,3 = 100 𝑔𝑟 
 

TheMATLAB codefor the model was then created with the form of the program loops embedded within each 

other to change the conditions sequentially.The rotation masses were set to 0.010 kg and spun with angular 
velocity as specified in Table 2. The results of this simulation are shown in Figure 5 with each color line 

representing a different omega condition as laid out in the table.  The greatest deviation for this case occurred for 

ωD condition, with a total deflection of 39 mm. 
 

The extra weight caused the projectile to deflect more in Weight Condition 2 than in Weight Condition 1 as 

expected.  Also, the greatest deflection occurred when all the masses rotated in the same direction with the same 

angular velocity.  The results for all these simulations are shown in Figure 6 with each ω condition, as specified in 
Table 3.  A deviation of 101 mm; this deviation was the greatest deviation out of all the masses cases examined 

for this phase. 
 

 
 

Figure 5. Lateral Deviation of the Concept Projectile for Mass Condition 1 and All ω Conditions. 
 

 

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0

0
.1

1
9

0
.2

3
8

0
.3

5
7

0
.4

7
6

0
.5

9
5

0
.7

1
4

0
.8

3
3

0
.9

5
2

1
.0

7
1

1
.1

9

1
.3

0
9

1
.4

2
8

1
.5

4
7

1
.6

6
6

1
.7

8
5

1
.9

0
4

2
.0

2
3

2
.1

4
2

2
.2

6
1

2
.3

8

2
.4

9
9

2
.6

1
8

2
.7

3
7

2
.8

5
6

2
.9

7
5

3
.0

9
4

La
te

ra
l D

e
vi

at
io

n
  

(m
)

Time (sec)

ωA

ωB

ωC

ωD

ωE

ωF



International Journal of Applied Science and Technology                                            Vol. 1 No. 6; November 2011 

106 

 

 
 

Figure 6. Lateral Deviation of the Concept Projectile for Mass Condition 2 and All ω Conditions. 
 

In Weight Condition 3, the greatest deviation for most cases of the weight conditions occurred when all the 

angular velocities are the same, similar to the other cases, as seen in Figure 7.  The maximum deviation for this 

case, and all the computer simulation cases, was 82mm.  
 

 
 

Figure 7. Lateral deviation of the concept projectile for Mass Condition 3 and All ω Conditions. 
 

3.3 Parametric Phase Change Study 
 

The phase in this study is specified as the location of the rotating masses with respect minor axes.   The initial 
phase of the mass was changed by rotating the mass from the starting position, as shown in Figure 8, to an evenly-

balance position about the major axis, as shown in Figure 9.   The position of the masses corresponds to Tables 5 

and 6 respectively.  Each of the phase changes was subjected to similar parametric studies as to weight changes, 

and corresponding results are shown in Figure 10.  It was found that if all the initial angular velocities of the mass 
were the same for all three masses, as stated for ωD, the movement of the projectile would be cyclic with the 

mean being a negated movement. 

 
Figure 8. All Masses at 90 Degrees as Specified in Phase Condition 1. 
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Figure 9. Masses in EquilateralTriangle as Specified in Phase Condition 2. 

 

Table 5.ω and Phase Condition 1. 
 

𝜔Condition 𝜔1(rpm) 𝜔2(rpm) 𝜔3(rpm) 

𝜔A 0 0 0 

𝜔B 167 0 0 

𝜔C 167 167 0 

𝜔D 167 167 167 

𝜔E 167 -83.3 -83.3 

𝜔F 0 0 -83.3 

𝜃1 = 𝜃2 = 𝜃3 = 90° 

𝑚𝑑,1 = 𝑚𝑑,2 = 𝑚𝑑,3 = 10𝑚𝑔 
 

Table 6.ω and Phase Condition 2. 
 

𝜔Condition 𝜔1(rpm) 𝜔2(rpm) 𝜔3(rpm) 

𝜔A 0 0 0 

𝜔B 167 0 0 

𝜔C 167 167 0 

𝜔D 167 167 167 

𝜔E 167 -83.3 -83.3 

𝜔F 0 0 -83.3 

𝜃1 = 90, 𝜃2 = 210, 𝜃3 = 330° 

𝑚𝑑,1 = 𝑚𝑑,2 = 𝑚𝑑,3 = 10𝑚𝑔 
 

Using the same computer simulation program, the initial starting phase of the masses was changed according to 

the Tables 5 and 6. The results from Condition 1, as specified in Table 5, were exactly the same, produced the 

results as shown in Figure 5.The results from Phase Condition 2, as specified in Table 6, are shown in Figure 10. 

The greatest deviation occurred for 𝜔E, shown by the light blue line in Figure 10with a total deviation of 19 mm.  

In the case of ωD, the gyroscopic force was all but negated within the system, and the projectile path was along 

the center line with no deviation laterally.  
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Figure 10. Lateral Deviation of the Concept Projectile for Mass Condition 1 Phase Condition 2. 
 

3.4  Comparisonof Reaction to Parametric Mass Change 
 

The selected results of the deviation were overlaid with each other for comparison.  The effect of the different 
masses used to calculate the deviation wasthen evaluated. The case for which the greatest deviation occurred 

varied from mass case.Phase 1, according to Table 5, was used for all initial phases for the Mass Conditions 

changes.According to the simulations, MassCondition 2had the greatest overall deviation for the Case ωD, as seen 
in Figure 7; this trend continued in all the other cases looked at where ωD had the greatest deviation.  In case of 

ωB, ωC, and ωD the trend of the projectile was to have a negative slope regardless of what mass was being used.  

This can be seen in Figures 11 and 12, for each case respectively.In case of ωE, the masses swinging in the 

opposite direction of the upper mass had a net canceling effect, and the projectile merely alternated the direction 
of traveling, as shown in Figure 13, with a mean deviation of zero.In case of ωF the slope of the trajectory was 

positive, as seen in Figure 14, because of the one mass rotating in an opposite direction when compared to ωB. 
 

 
 

Figure 11. Lateral Deviation of Concept Projectile for Mass Comparison of ωB. 
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Figure 12. Lateral Deviation of the Concept Projectile for Mass Comparison of ωD. 
 

 
 

Figure 13. Lateral displacement of concept projectile for Mass Comparison of ωE. 
 

 
 

Figure 14. Lateral Deviation of Concept Projectile for Mass Comparison of ωF. 
 

3.5 Comparison of Reaction to Parametric Phase Change 
 

The selected results of the deviation were overlaid with each other for comparison.  The effect of the different 

starting phase (either all the masses were initially pointed upward or evenly balanced) used to calculate the 

deviation wasthen evaluated.  The two cases of initial phase that were examined were when the rod masses were 
parallel to each other, as shown in Figure 8.  
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The other case was when all masses were equally spaced apart with the angle between the rods being 120 degrees, 

as shown in Figure 9.  The case of Phase 1 among the different simulations has already been compared above.   In 
all cases when Phase 1 is compared to Phase 2 for case ωB, the deviation of the projectile is identical as would be 

expected because it is the center mass which is in a vertical position for both cases. In the simulations, the 

difference in the deviation of the projectile depending on phases can be seen in Figure 15.  The greatest difference 

in the action of the projectile took place for ωD and ωE, which is amplified in Figure 16.  The projectile path 
behaved as expected in that, for Phase2, the projectile stayed along the axis for ωD and deviated for ωE. But for 

Phase1, it behaved in the opposite manner--deviating for ωD and traveling along the axis for ωE. 
 

 
 

Figure 15. Lateral deviation of concept projectile for Phase 1 and 2 Comparison Mass1 of ωB and ωE. 
 

 
 

Figure 16.Lateral Deviation of the Concept Projectile for Phase 1 and 2 Comparison Mass1 of ωD and ωE. 
 

 
 

Figure 17. Maximum Deviation Comparison for all Mass Conditions, all ω Conditions, for Phase 1 (All 

masses pointing upward). 
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Figure 18. Maximum Deviation Comparison for Mass1, all ω Conditions, Phase 1 (all masses pointing 

upward) and 2 (masses evenly balanced). 
 

4.  CONCLUSION 
 

This study was aimed at conducting conduct a parametric study on the concept of controlling a projectile by the 
controlled spinning of one to three internal masses.  The masses were mounted atop mass-less rods, and these rods 

were then pinned on the opposite end to the main body of the projectile, equally distanced from each other and the 

major axis of the projectile. The governing equations of motion of the projectile were generated and numerically 
solved. In the parametric study, the mass, starting orientation, and angular rotation of the disks were 

systematically changed, and the results were captured.  Examination of the results from this study revealed that 

the projectile deviated from line of travel when it was subjected to an internally gyroscopic force.   Because the 

deviation of the projectile can be controlled, the flight path could be corrected to counteract an undesired 
movement in the lateral direction. A summary of the results in terms of maximum deviation for the various 

configurations are shown in Figures 17 and 18.   The deviation varied depending on the initial conditions, with the 

greatest deviation just over 100 mm in Mass Condition 2, Phase 1, for ωD (all three masses rotating with the same 
rate and in the same direction), as seen in Figure 6.Yet, considering the diameter of the projectile being 

considered, 20mm, the deviation was just over 5 times the diameter.  With a continuous slope over a range of 

2500 meters, the implementation of this system is probably not worth the effort or the expense.  Also with the 
given slope of the deviation, it renders nearly impractical for arcing the projectile around an object in the flight 

path or correcting to external deviating forces. 
 

To improve this system, one could devise a control system to do ‘real time’ correction for minor deviations.  More 

research in the effect of the initial phase of the mass could be examined or orienting the position of the rotation 

axis to not parallel to the major axis of the projectile.Moving the orientation of the axis would have a similar 

effect, but initial speculation would anticipate a more chaotic flight path.The speculative development and 
production cost of design for one-use projectiles would most likely adversely outweigh any improved accuracy 

adversely.  The funds and efforts could be put to better use in designinga more robust adaptive targeting system to 

consider initial conditions before launching the solid core round at the target.  For far larger applications such as 
reentry vehicles the idea of rotating internal members may have use by adding stability or control to the system.  

This concept may pose merit, especially if already existing systems such as robot arms could be implemented and 

if it would merely be adding a control system to existing onboard computers. 
 

Overall, the movement of the projectile behaved as expected with greatest deviation occurring for the case of ωD 

for the case of Phase1, when all three masses were rotating at the same rate and in the same direction. Yet this 

movement was negated when the initial phase was changed to Phase2.  Also, for ωE for Phase1, when one masses 
rotated in one direction and the other two at half rate in the opposite direction, the lateral deviation was minimal, 

as was anticipated.  In general, the results from this study may have possible application for flight vehicles other 

than small simple projectiles. 
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