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Abstract

The main object of investigation in the present paper is the classical Lotka-Volterra mathematical model. There
are introduced orbital gravitation and orbital Hausdorff stability of the trajectories of this model. Under natural
assumptions, it is showed that Lotka-Volterra model possesses these properties.
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1. Introduction

The Lotka-Volterra mathematical model describes quite accurately the evolution dynamics of predator-prey
interactions of an isolated (without external influences) biosystem. The classical initial problem of this model has
a form:

(1) %—T:m:Fm(m,M):m(rl—qlM),
) dd—l\t/I:M:FM(m,M):—M(rz—qzm),
®) m(0)=my; M (0)=M,,

Where:

-m= m(t) >0 and M =M (t) >0 are the quantities of biomasses of the prey and the predator respectively at

the moment t >0;

- The constants 1, >0 and r, > 0 are specific coefficients of the relative growth of the first species (prey) and the
second species (predator), respectively;

- The constants ¢, >0 and g, >0 are the coefficients reflecting interspecies competition for the prey and the
predator, respectively;

- The constants m, >0 and M, >0 are the quantities of biomasses of both species at the initial moment t =0.

It is known that the system (1), (2) possesses:
- Unstable stationary point (O, O), (the origin is a saddle point);

- Stable stationary point (m00 : MOO):(% %) :
2 1

- A first integral of the following form

U(mM)=gM +g,m-r,InM —rzlnm+r1(ln%—l)+r2(ln% —1)
1 2

=W (m,M)-W (my,, My, ),
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where
W(m,M)=gM +g,m-rInM —r, Inm;
- For any point (m,M)e0 " x0", (m,M)=(my,My,) the inequality U (m,M)>0 is valid. It is fulfilled

u (moo' IVloo)zo;
- For any constant ¢ >0 the implicitly given curve

e ={(mM):U(mM)=c|

is a trajectory of the system (1), (2) with a properly chosen initial condition (it is sufficient to assume that

U (my, M, )=c);

- Forany constant ¢ >0 the set
D, ={(m,M):U(m,M)<c}
is a connected domain, located in [J * <[] ™, with a contour oD, = y.;
- For any constant ¢ >0 it is satisfied (my,, M, ) € D;
-1f 0<c, <c,, then y, €D, .
Different aspects of the population dynamics are studied in [1] + [27].

2. Statement of the problem and preliminary remarks

If the points a(a,,a,,....a,), b(b,b,,....b,)ell ", then their dot product, the Euclidean norm and the Euclidean
distance between them are denoted respectively by:

(a,b)=ab +ab, +..+ab,
la]=(a,a)? = fa’ +a+..+a?,

pe (ab)=y(a,-b,) +(a,~b,) +..+(a,-b, ).

It is clear that equality [a—b| = o (a,b) is valid. If the non empty sets A, B<[1", then the Euclidean and the
Hausdorff distances between them are denoted respectively by:

pe (AB)=inf {inf {p. (a,b),acA},beB},

pu (A B)= max{sup{inf {pe(ab),acAl be B}, sup{inf {pc(a,b),beB},ae A}} .
The inequality o (A B)< p,, (A B) is obviously true.

The Euclidean and the Hausdorff distance between the trajectories . and Y satisfy the following equalities

respectively:
pe (77, ) =int {inf (e ((m7, M), (m M), (m" M), (m, M)eyco},

P (;/Ca,y%):max{sup{inf {pE ((m M"),(m,M )) (m", M*)eycs}, (m, M)eyco},

sup{inf{pE«m*,M*),(m,M)),(m,M)ey%}, (m*,M*)eyca}}.
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Definition 1. We say that the system (1), (2) is orbital gravitating in the domain D with a constant x>1, if:
(VCS,CO ell ) (n;, Ve, € D) = Py (yc;, Y, ) < K.Pe (703, 7%)
<:>max{sup{inf {pE ((mM)(mM)) (m*,M*)eyCS}, (m,M)eyCO},
sup{inf{pE((m*,M*),(m,M)),(m,M)ey%}, (m*,M*)eyc;}}
sx.inf{inf {pE ((m*,M*),(m,M)), (m*,M*)eyC;}, (m,M)e;/CO}.
Definition 2. We say that the solution of problem (1), (2), (3) is orbital Hausdorff stable if:
(Ve >0) (V(my, My ) ell * 0 *)(36=5(e,m;, M) >0):
(v(m5M3) €0 <07, o (M5, M5 ), (M, Mo)) < 8) = i (74077, ) <2
where ¢, =U (m,,M,) and ¢; =U (my, Mg ).

The following two theorems are auxiliary.

Theorem 1. Assume that:
1. The constants ¢, and c, satisfy the inequalities 0 < ¢, <Cj ;

2. Thedomain D=D_\D, .

Then for every point (m, M ) €7, there exists a point (m*, M *) €7, such that the segment

p={(m,M,);m,=(1-2)m+im’, M,=(1-2)M +1M", 0< 1 <1} < D.
Proof. Let the point (m, M) €y, . We consider the half-line
sl={(m+A'(m=my), M+4'(M=M,)), '>0}.
There exists a constant A" >0 such that
(M+A" (M=), M+2"(M =M ))=(m",M") e ..
It is true that
p={((1-2)m+am",(1-2)M +iM"), 0< 1 <1}
={(m+A'(M=my), M+ (M-M,)), 0<A'< A},

_AY, D
where A /1 . We shall show that #€ D .

One of the following cases is valid:
1. m<my, M <Mg;
2. m<my, M >Mg;
3.m>my, M <Mg;
4. m=2my, M =M,
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where my, = % and M, = / We shall consider only case 1. In this case we get:

< _h/ < —V _ —V _
/ q / //qZ ’ ql A/I_ql MOO ql rl/ql

Let the function F(1')=U ((m+/1'(m—moo) ,M+1'(M —MOO))), 0<A'<A". We have

d 2 d - '
HFM )=au((m+ﬂ (M=), M+2'(M=M)))
=%W ((m+ﬂ'(m—moo) ,M+2(M _MOO)))

:(qf m+/1'(m—mOO)J(m_m°°)+(ql_ M +/1'(|r\1/| —MOO)](M ~Mu)20.

because

m-my, <0 , - <g,-=<0
°° % m+4'(m-my) %
I I

M-My,<0, q- L <g,—-—=+<0
° % M+1'(M=Mg) LY

From last inequalities we conclude that (( '(M—my), M+4'(M —MOO)))GB, 0<A'<A orueD.

The theorem is proved.

Theorem 2. Assume that:
1. The constants C, and ¢, satisfy the inequalities 0 < ¢, <C;;

2. The connected set y c D = Dc; \ DCD ;
3. For every points (m,M)e 7, and (m*, M*) €7, the segment
p={(m,M,); m,=(1-2)m+im’, M,=(1-2)M + M, 0< A <1}
intersects the set ¥, i.e. yNu#J.
Then for every point (m, M) ey, there exist the points (m*, M*) €7, and (m',M") ey such
that the vector (m*—m , M*—M) is collinear with gradU (m',M ")

Proof. Let the point (m, M ) €7, - Similarly of the proof of previous theorem one of the following cases
is valid:
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m<my, M <My;

m<my, M >Mg;

1.
2.
3. m>my, M <Mg;
4. m=2my, M =M
Casel. m<my, M <M. We denote:
7'C5=7C;m{(m*,M*), m <m, M*SM},
y'=7/m{(m',M'),m'£m, M'< M}.

For each point (m',M ") e y" there are satisfied:

gradU (m',M ") = (au(gn'M') aU(m'M')j ( /-.ql K/Ij
a0 4

Case 1.1. Let m<my, and M <M, . Then the following strict inequalities are valid:

qz_%-<01 ql—%/l.<0.

Let u is the segment with the endpoints (m,M)ey, and (m*,M*)eyc*. For every point

(m*, M m'M I)E7Ich(7h/‘) we consider the function
m —m
. KA-
First, let the point (m: Ml*) :(m, Ml*) € ;/'C* . Then, it is clear that M, <M and therefore
m-—m
" KA-
Second, if the point (m; M;):(mz, M)e 7/'08’ then M, <m . We get
m,—m
" KA-

Since the function F is continuous on the connected set 7'C*><(;/'my) then there exists a point
0

F(mMmM

F(m,M;,m'M")

F(m;,M;,m'M")

(m*, M*.m''M ) from this set such that

F(m*,M*,m',M'):O N _M-M
r2 rl
%‘/n' ql_m'

Case 1.2. Let m=m,, and M <M,,. We assume that m" = m . Then the following equalities are valid:

This proves the theorem in case 1.1.
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m =m=my,=m/ qz—%;o.
and consequently

(m=m, M -M)=(0,M"=M),
gradU (m',M '):(0 : ql—%/l.).

From the last equalities it follows that the vectors (m* -m,M" -M ) and gradU (m',M") are collinear.
Case 1.3. Let m<my, and M =M,. Then, as the previous case we determine

(m"=m,M"=M)=(m"-m, 0),

gradu (m', M '):(q2 —%. , O).

Therefore, the above vectors are collinear. Under this assumption the theorem is proved.
The remaining three cases: m<my,, M >My; m>m,,, M <M, and m=m,, M =M, are considered
similarly so we omit them.
The theorem is proved.
3. Main result

Theorem 3. Assume that:
1. The constants ¢, and c, satisfy the inequalities 0 <c, <C,;

2. The domain D =D, \D, .
Then the system (1), (2) is orbital gravitating in the domain D with a constant

_ sup{|gradu (m',M*)].(m',M") D}.
inf {ngadu (m,M).(m" M) e D}

Proof. Let the trajectories y_ , Ve © D. We have ¢, <¢c, <C,, ¢, <C, <C, and

Ve ={(MM):U(mM)=c,|

={(m,M): M +g,m-r, InM —rzlnm+rl(ln%—1j+r2(ln% —1)=c0},
1 2

7, :{(m,M ): M +g,m-rInM —r, Inm+rl(ln% —1)+ rz(ln% —1j:c;}.
0 1 2

We assume that C, < C, . The proof of the case ¢, >, is similar. The case ¢, = c, is trivial.
Let the point (m,M)ey, . Let (m*, M*) be a point such that (m*, M*) €y, and the segment u with the

endpoints (m, M ) and (m*, M*) belongs to D . \ DCO (see Theorem 1). We consider a function

F(4)=U(m+i(m" —m),M+4(M"=M)), ie[0,1].
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We have: F(0)=U(m,M)=c,, F(1)=U(m",M")=c, and F is continuous differentiable function on the
interval [0,1]. Then there exists at last one constant 4, = 4, (m, M, m’, M”), 0< 4, <1, such that
@ |G —c|=[F(0)-F(0) =|F (%)

:‘%U(m+lo(m*—m),M +AO(M*—M))‘
:‘§U<m+ﬁo<m*—m),M +p(M7=M))(m*=m)

+mu(m+xﬂ(m*—m),|\/| +/10(M*—M))(M*—M)‘.
(

= gradu (m-+ 4 (" —m), M+ 2, (M" =M ) (" —m, m" - )

| rats 2o )2 "),

\/(m*—m)zJr(l\/I*—M)2 ,\/(m*_m)er(l\/l*_M)z J>\/(m _m) +(|V| —I\/I) .

We denote
7 ={(m M) =(m+ 2 (m"=m) , M+ 4, (M7 =M)),
where:(m,M)ey,, (m*’M*)EVC;’
((1-2)m+2m",(1-2)M +AM")= D \D, for 0< <1, ‘cg—co‘:|F'(ﬂo)|}.
In other words, the set » consists of the points (m', M ) such that:
(m',M')e,u;
p={(m,M,);m,=(1-2)m+am’, M,=(1-A)M +iM", 0< A <1};
(m,M)e;/CO, (m*,M*)e;/C;;

,ucDC;\DCO;

‘c;—co‘:KgradU (m,M*),(m" =m, M" =M )>‘

It is clear that » is a connected set and for every points (m, M)eyCO and (m*, M*)e7c* the segment u

intersects the set y. According to Theorem 2, it is possible to chose two points (m*,M*)eyc* and
0

(m',M ')=(m+20(m*—m) .M +20(M*—M))eymy so that the vector
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(m*—m , M*—M)
to be collinear with the vector
gradu (m',M ') = gradu (m+ﬂ0(m*—m) M +AO(M*—M)).

Then from (4) it follows

o — | <gradU (m+ﬂo(m*—m) M+ 4 (M =M ))

|v||v|)

gradU(mJJO(m ) M+/10( >
AR

ngadU(m+20(m M+ 4 (M

=ngadu(m+20(m*—m) M +7o(M7=M))

De ((m M )(mM))

Therefore, we have

pE((m,M) (m" ™ ))

5o~

|oradu (m+ 2, (m" =m),M + 4, (M"=M))|
whence we obtain
% ¢l
sup{”gradU (m, M), (m'.M")e D}
= const, < p, ((m M), (m", M))
% —c|
inf {ngadU (m,M).(m M ") e D} '

<const, =

From the last inequalities, we get:
5)  const, < inf {inf {pE ((m M”),(m M )),(m*, M")e 703}’(m’ M)e 7’%}
= PE (70377/00)

and

(6) sup{inf {pE ((m M”),(m M )),(m*, M) e 706}’(m’ M)e 700} < const, .
By analogy with (6) we conclude that

7) sup{inf {pE ((m M”),(m M ))(m M)e y%},(m*, M")e 703} < const,.
Using (6) and (7) we have
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®) py (%;%U ) = max{sup{inf {pE ((m M), (m,M ))(m M")e 703}1(”‘, M)e y%},
sup{inf {pE ((m M”),(m, M ))(m M)ey%},(m*, M*)eycg}} < const,.
Therefore, from (5) and (8) it i follows
const, < pe (705 Ve, ) < Py (VC; Ve, ) < const,
and hence

P (7c;’)/co ) _const, _ sup{|gradu (m',M")|,(m",M") D}
e (703,7/%) ~const, inf {||gradU (m',M )||(m M')e D}

=K.

The theorem is proved.

As corollary of the last theorem we obtain the following theorem.
Theorem 4. The solution of problem (1), (2), (3) is orbital Hausdorff stable.

Proof. Let & be arbitrary positive constant, ¢, =U (m,, M, ) and the constants ¢, and c, satisfy the inequalities
1 3 . .
0<c <c,<c,. For example let c :ECO and ¢, :ECO. Then, according to Theorem 3, it follows that the

system (1), (2) is orbital gravitating in the domain D = D, \ D, with a constant x =x(D)=x(c,,c,)=x(c,)
= (M, M, ) . Then for every point (m, MS) e D such that

PE ((m;’MS)'(mo'Mo))<gK
we have
PH (7c3’7c0)SKpE (7/06’7/(:0)SK10E ((m;'M;)’(mO'MO))<g'

where ¢, =U (m; M;)
The theorem is proved.
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