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Abstract 
 

The main object of investigation in the present paper is the classical Lotka-Volterra mathematical model. There 

are introduced orbital gravitation and orbital Hausdorff stability of the trajectories of this model. Under natural 
assumptions, it is showed that Lotka-Volterra model possesses these properties. 
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1. Introduction 
 

The Lotka-Volterra mathematical model describes quite accurately the evolution dynamics of predator-prey 

interactions of an isolated (without external influences) biosystem.  The classical initial problem of this model has 

a form: 
 

(1)      1 1,m

dm
m F m M m r q M

dt
    , 

(2)      2 2,M

dM
M F m M M r q m

dt
    , 

(3)      0 00 ; 0m m M M  , 

 

Where: 

-   0m m t   and   0M M t   are the quantities of biomasses of the prey and the predator respectively at 

the moment 0t  ; 

- The constants 1 0r   and 2 0r   are specific coefficients of the relative growth of the first species (prey) and the 

second species (predator), respectively; 

- The constants 1 0q   and 2 0q   are the coefficients reflecting interspecies competition for the prey and the 

predator, respectively; 

- The constants 0 0m   and 0 0M   are the quantities of biomasses of both species at the initial moment 0t  . 
 

It is known that the system (1), (2) possesses: 

- Unstable stationary point  0,0 ,  (the origin is a saddle point); 

- Stable stationary point   2 1
00 00

2 1

, ,
r r

m M
q q

  
 

; 

- A first integral of the following form 

 

  1 2
1 2 1 2 1 2

1 2

, ln ln ln 1 ln 1
r r

U m M q M q m r M r m r r
q q

             
   

 

=    00 00, ,W m M W m M , 
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where 
  

  1 2 1 2, ln lnW m M q M q m r M r m    ; 
 

- For any point      00 00, , , ,m M m M m M      the inequality  , 0U m M   is valid. It is fulfilled 

 00 00, 0U m M  ; 

- For any constant 0c   the implicitly given curve 

 

    , : ,c m M U m M c    
 

is a trajectory of the system (1), (2) with a properly chosen initial condition (it is sufficient to assume that 

 0 0,U m M c ); 

- For any constant 0c   the set 
 

    , : ,cD m M U m M c   
 

is a connected domain, located in 
   , with a contour c cD   ; 

- For any constant 0c   it is satisfied  00 00, cm M D ; 

- If 1 20 c c  , then 
1 2c cD  . 

 

Different aspects of the population dynamics are studied in [1] ÷ [27]. 
 

2. Statement of the problem and preliminary remarks 
  

If the points    1 2 1 2, ,..., , , ,..., n

n na a a a b b b b  , then their dot product, the Euclidean norm and the Euclidean 

distance between them are denoted respectively by: 
 

1 1 2 2, ... ,n na b a b a b a b     

1
2 2 22

1 2, ... na a a a a a     , 

       
2 2 2

1 1 2 2, ...E n na b a b a b a b        . 
 

It is clear that equality  ,Ea b a b   is valid. If the non empty sets , nA B  , then the Euclidean and the 

Hausdorff distances between them are denoted respectively by: 
 

     , inf inf , , , ,E EA B a b a A b B     
 

          , max sup inf , , , , sup inf , , ,H E EA B a b a A b B a b b B a A       . 
 

The inequality    , ,E HA B A B   is obviously true. 
 

The Euclidean and the Hausdorff distance between the trajectories 
0c  and *

0c
  satisfy the following equalities 

respectively: 

            * *
0 00 0

* * * *, inf inf , , , , , , , ,E c E cc c
m M m M m M m M         

            * *
0 00 0

* * * *, max sup inf , , , , , , , ,H c E cc c
m M m M m M m M       

 

                                           *
0 0

* * * *sup inf , , , , , , ,E c c
m M m M m M m M    . 
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Definition 1. We say that the system (1), (2) is orbital gravitating in the domain D  with a constant 1  , if: 
 

   *
00

*

0 0, : , cc
c c D        * *

0 00 0

, . ,H c E cc c
      

   

           *
00

* * * *max sup inf , , , , , , , ,E cc
m M m M m M m M    

 

                         *
0 0

* * * *sup inf , , , , , , ,E c c
m M m M m M m M     

 

          *
00

* * * *.inf inf , , , , , , , .E cc
m M m M m M m M     

 
 

Definition 2. We say that the solution of problem (1), (2), (3) is orbital Hausdorff stable if: 
 

       0 0 0 00 , , , 0 :m M m M              

       * * * *

0 0 0 0 0 0, , , , ,Em M m M m M        *
00

,H cc
     , 

 

where  0 0 0,c U m M
 
and  * * *

0 0 0, .c U m M
 

 

The following two theorems are auxiliary. 
 

Theorem 1. Assume that: 

1. The constants 0c  and 
*

0c  satisfy the inequalities 
*

0 00 c c  ; 

2. The domain *
00

\ cc
D D D . 

Then for every point  
0

, cm M   there exists a point    *
0

* *,
c

m M 
 
such that the segment 

 

      * *, ; 1 , 1 , 0 1 .m M m m m M M M D                 
 

 

Proof. Let the point  
0

, cm M  . We consider the half-line 
 

     00 00' , ' , ' 0sl m m m M M M        . 
 

There exists a constant 
* 0   such that 

 

       *
0

* * * *

00 00, ,
c

m m m M M M m M        . 
 

It is true that 
 

     * *1 , 1 , 0 1m m M M             

     *00 00' , ' , 0 'm m m M M M          , 

 

where *
'


 . We shall show that D  .  

 

One of the following cases is valid: 
 

1. 00 00,m m M M  ;  

2. 00 00,m m M M  ;  

3. 00 00,m m M M  ;  

4. 00 00,m m M M  , 



© Centre for Promoting Ideas, USA                                                                                                 www.ijastnet.com 

137 

 

where 2
00

2

r
m

q
  and 1

00
1

r
M

q
 . We shall consider only case 1. In this case we get: 

 

2 2 2 1 1 1
2 2 2 1 1 1

00 2 2 00 1 1

0, 0.
r r r r r r

q q q q q q
m m r q M M r q

           
 

 

Let the function         *

00 00' ' , ' , 0 ' .F U m m m M M M            We have 
 

       00 00' ' , '
' '

d d
F U m m m M M M

d d
  

 
      

     00 00' , '
'

d
W m m m M M M

d
 


      

 
 

 
 2 1

2 00 1 00

00 00

0
' '

r r
q m m q M M

m m m M M M 

   
                  

, 

 

because 

 

 
2 2

00 2 2

00

0 , 0
'

r r
m m q q

m m m m
     

 
, 

 
1 1

00 1 1

00

0 , 0
'

r r
M M q q

M M M M
     

 
. 

 

Therefore,      *0 'F F F   , i.e. 
 

     0 , 0 'c U m M F F     

     00 00' , 'U m m m M M M       

   * * * * *

0, , 0 ' .F U m M c        
 

From last inequalities we conclude that      00 00' , ' ,m m m M M M D       
*0 '    or D  . 

The theorem is proved. 
 

Theorem 2. Assume that: 

1. The constants 0c  and 
*

0c  satisfy the inequalities 
*

0 00 c c  ; 

2. The connected set *
00

\ cc
D D D   ;  

3. For every points  
0

, cm M   and   *
0

* *,
c

m M 
 
the segment 

 

       * *, ; 1 , 1 , 0 1m M m m m M M M                  

 

intersects the set  , i.e.    . 

Then for every point  
0

, cm M   there exist the points   *
0

* *,
c

m M   and   ', 'm M     such 

that the vector  * *,m m M M   is collinear with  ', 'gradU m M . 

Proof. Let the point  
0

, cm M  . Similarly of the proof of previous theorem one of the following cases 

is valid: 
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1. 00 00,m m M M  ;  

2. 00 00,m m M M  ;  

3. 00 00,m m M M  ;  

4. 00 00,m m M M  . 
 

 Case 1. 00 00,m m M M  . We denote: 
  

  * *
0 0

* * * *' , , , ,
c c

m M m m M M    
   

  
  ' ', ' , ' , 'm M m m M M     . 

 

For each point  ', ' 'm M   there are satisfied: 
 

 
   

2 1
2 1

', ' ', '
', ' , ,

' '

U m M U m M r r
gradU m M q q

m Mm M

         
   

, 

2 2 2 2
2 2 2 2

00 2 2

0,
'

r r r r
q q q q

m m m r q
       

  

1
1 0

'
r

q
M

  . 

 

Case 1.1. Let 00m m  and 00M M . Then the following strict inequalities are valid: 
 

2
2 0,

'
r

q
m

 
  

1
1 0

'
r

q
M

  . 

 

Let   is the segment with the endpoints  
0

, cm M   and   *
0

* *,
c

m M  . For every point 

   *
0

* *, , ', ' ' '
c

m M m M     
 
we consider the function 

 

 
* *

* *

2 1
2 1

, , ', '

' '

m m M M
F m M m M

r r
q q

m M

 
 

 

, 

 

First, let the point    * * *

1 1 1, ,m M m M  *
0

'
c

 . Then, it is clear that 
*

1M M  and therefore 

 

 
*

* * 1
1 1

2 1
2 1

, , ', ' 0.

' '

M Mm m
F m M m M

r r
q q

m M


  

 

 

 

Second, if the point    * * *

2 2 2, ,m M m M  *
0

'
c

 , then 
*

2m m . We get 
 

 
*

* * 2
2 2

2 1
2 1

, , ', ' 0.

' '

m m M M
F m M m M

r r
q q

m M

 
  

 

 

 

Since the function F  is continuous on the connected set  *
0

' '
c

     then there exists a point 

 * *, , ', 'm M m M
 
from this set such that 

 
* *

* *

2 1
2 1

, , ', ' 0

' '

m m M M
F m M m M

r r
q q

m M

 
  

 

. 

This proves the theorem in case 1.1. 
  

Case 1.2. Let 00m m  and 00M M . We assume that 
*m m . Then the following equalities are valid: 
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* 2
00 2', 0.

'
r

m m m m q
m

      

and consequently 
 

   * * *, 0 , ,m m M M M M     

  1
1', ' 0 , .

'
r

gradU m M q
M

   
 

 

 

From the last equalities it follows that the vectors  * *,m m M M   and  ', 'gradU m M  are collinear. 
 

Case 1.3. Let 00m m  and 00M M . Then, as the previous case we determine 
    

   * * *, , 0 ,m m M M m m     

  2
2', ' , 0 .

'
r

gradU m M q
m

   
 

 

 

Therefore, the above vectors are collinear. Under this assumption the theorem is proved. 
 

The remaining three cases: 00 00,m m M M  ; 00 00,m m M M   and 00m m , 00M M  are considered 

similarly so we omit them. 
 

 The theorem is proved. 
 

3. Main result 
 

Theorem 3. Assume that: 

1. The constants 1c  and 2c  satisfy the inequalities 1 20 c c  ; 

2. The domain 
2 1

\c cD D D . 

Then the system (1), (2) is orbital gravitating in the domain D  with a constant 
 

    
    

sup ', ' , ', '
.

inf ', ' , ', '

gradU m M m M D

gradU m M m M D






 

 

 Proof.  Let the trajectories *
0 0

,c c
D   . We have 1 0 2c c c  , 

*

1 0 2c c c   and 

 

    
    

0 0, : ,c m M U m M c    

             1 2
1 2 1 2 1 2 0

1 2

, : ln ln ln 1 ln 1 ,
r r

m M q M q m r M r m r r c
q q

              
   

 

 

     
  *

0

*1 2
1 2 1 2 1 2 0

1 2

, : ln ln ln 1 ln 1 .
c

r r
m M q M q m r M r m r r c

q q
               

     

 

We assume that 
*

0 0c c . The proof of the case 
*

0 0c c  is similar. The case 
*

0 0c c  is trivial. 
 

Let the point  
0

, cm M  . Let  * *,m M
 
be a point such that   *

0

* *,
c

m M   and the segment   with the 

endpoints  ,m M  and  * *,m M  belongs to *
00

\ cc
D D  (see Theorem 1). We consider a function 

 

        * *, , 0,1F U m m m M M M         . 
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We have:     00 ,F U m M c  ,    * * *

01 ,F U m M c   and F  is continuous differentiable function on the 

interval  0,1 . Then there exists at last one constant  * *

0 0 , , ,m M m M  , 00 1  , such that 
 

(4)               *

0 0 01 0 'c c F F F    

 

  

    * *

0 0,
d

U m m m M M M
d

 


      

  

     

     

* * *

0 0

* * *

0 0

,

, .

U m m m M M M m m
m

U m m m M M M M M
M

 

 


     



     
  

 

                  
      * * * *

0 0, , ,gradU m m m M M M m m M M       
 

 

    * *

0 0, ,gradU m m m M M M       

     

       
   

* *
2 2

* *

2 2 2 2
* * * *

, . .
m m M M

m m M M

m m M M m m M M

 
  

   
      
 

 

 

We denote 
 

           * *

0 0', ' , ,m M m m m M M M         

    *
0 0

* *: , , , ,c c
where m M m M    

        *
00

* * *

0 0 01 , 1 \ 0 1, 'cc
m m M M D D for c c F              . 

 

In other words, the set   consists of the points  ', 'm M  such that: 
 

-  ', 'm M  ; 

-       * *, ; 1 , 1 , 0 1 ;m M m m m M M M                  

-     *
0 0

* *, , ,c c
m M m M   ; 

- *
00

\ cc
D D  ; 

-    * * *

0 0 ', ' , ,c c gradU m M m m M M    . 

 

It is clear that   is a connected set and for every points  
0

, cm M   and   *
0

* *,
c

m M 
 
the segment   

intersects the set  . According to Theorem 2, it is possible to chose two points   *
0

* *,
c

m M   and 

      * *

0 0', ' ,m M m m m M M M         
 
so that the vector 
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 * *,m m M M   
 

to be collinear with the vector 
 

      * *

0 0', ' ,gradU m M gradU m m m M M M      . 

 

Then from (4) it follows 
 

*

0 0c c     * *

0 0, ,gradU m m m M M M       

                    
    
    

   
* *

2 20 0 * *

* *

0 0

,
.

,

gradU m m m M M M
m m M M

gradU m m m M M M

 

 

   
  

   
 

 

                      * * * *

0 0, . , , ,EgradU m m m M M M m M m M       . 

 

Therefore, we have 
 

    
    

*

0 0* *

* *

0 0

, , ,
,

E

c c
m M m M

gradU m m m M M M


 




   
, 

 

whence we obtain 

 

    

*

0 0

sup ', ' , ', '

c c

gradU m M m M D




 

    * *

1 , , ,Econst m M m M   

                          
    

*

0 0

2
inf ', ' , ', '

c c
const

gradU m M m M D


 


. 

 

From the last inequalities, we get: 
 

(5)           *
00

* * * *

1 inf inf , , , , , , ,E c cconst m M m M m M m M    
 

 *
00

,E c c  
 

 

and 

 

(6)           *
00

* * * *

2sup inf , , , , , , ,E c cm M m M m M m M const     . 

 

By analogy with (6) we conclude that 
 

(7)           *
0 0

* * * *

2sup inf , , , , , , , .E c cm M m M m M m M const      

 

Using (6) and (7) we have 
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(8)              * *
0 00 0

* * * *, max sup inf , , , , , , , ,H c c E c cm M m M m M m M         

          *
0 0

* * * *

2sup inf , , , , , , , .E c cm M m M m M m M const    
 

 

Therefore, from (5) and (8) it is follows 
 

   * *
0 00 0

1 2, ,E c c H c cconst const         

 

and hence 
 

 
 

    
    

*
00

*
00

2

1

, sup ', ' , ', '

inf ', ' , ', ',

H c c

E c c

gradU m M m M Dconst

const gradU m M m M D

  


  


  


. 

 
The theorem is proved. 

 

As corollary of the last theorem we obtain the following theorem. 
 

Theorem 4. The solution of problem (1), (2), (3) is orbital Hausdorff stable. 
 

Proof.  Let   be arbitrary positive constant,  0 0 0,c U m M  and the constants 1c  and 2c  satisfy the inequalities 

1 0 20 c c c   . For example let 1 0

1

2
c c  and 2 0

3

2
c c . Then, according to Theorem 3, it follows that the 

system (1), (2) is orbital gravitating in the domain 
2 1

\c cD D D  with a constant      1 2 0,D c c c       

 0 0,m M . Then for every point  * *

0 0,m M D  such that 

 

    * *

0 0 0 0, , ,E m M m M 


  

 

we have 
 

        * *
0 00 0

* *

0 0 0 0, , , , , ,H c c E c c E m M m M           

 

where  * * *

0 0 0,c U m M . 

The theorem is proved. 
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