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Abstract 
 

Artificial Neural Network (ANN) has achieved a lot of attention as well as gained enormous popularity over the 

last two decades owing to its vast applications both in industry and academia. This paper explicitly and 
effectively examines the application of ANN to speed forecast of dc motors. The angular speed of a dc motor can 

be determined by prediction with given voltage as input parameter. By using motor parameter values and 

assigning state variables as armature current, angular speed, and rotor displacement; the dc motor transfer 
function relating angular speed to voltage was obtained. With the input (voltage) and speed as the target. A 

simulation process was carried out on the transfer function using one of the most commonly used and versatile 

technical computing facilities (MATLAB & SIMULINK, version 7.0) to generate various input/target pairs for the 
ANN training and testing. Levenberg-Marquardt standard back-propagation algorithm with normalized 

preprocessed data was used to predict and show the pattern of correlation of input (voltage) in relation to the 

output (speed). The ANN developed comprised 4 layers: an input layer, 2 hidden layers, and an output layer. The 
input layer has 20 neurons; the first hidden layer has 20 neurons, the second hidden layer has 18 neurons, while 

the output layer has a single neuron. The ANN was able to develop a good mapping between the input and the 

target. The results obtained  indicated 100% correlation and an absolute mean error (AME) of 0.38% during 
testing with unfamiliar input/target data pairs. The former shows a high reliability of the network to predict the 

output while the latter represents on an average, a very high degree of accuracy in the prediction.   
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1. Introduction 
 

DC motors are one of the most widely used prime movers in industry today. The advancement made in power 
electronics has made brushless dc motors quite popular in high-performance control systems. Peculiar properties 

such as very low inertia, very high-torque-to-volume ratio and low-time constant properties have opened 

applications for dc motors in computer peripheral equipment such as tape drives, printers, disk drives, word 
processors, and automation/machine tool industries [1].  The speed of operation of dc motor is the crux of the 

matter in this research work. Carrying out an experiment in the laboratory to study the dc motor speed 

performance could prove cost-ineffective and time-consuming especially in a country where we have insufficient 
funds to maintain existing research facilities, or to even acquire state-of-the-art facilities. A rational, logical and 

analytical thinking suggests that system modeling and simulation of the actual physical system can offer a better 

alternative. By this alternative, dc motor speed control can be achieved in a number of ways such as Proportional-
Integral-Derivative (PID) control, state-space control, digital PID control and others. However, when we desire a 

reliable and a very accurate dc motor speed forecast, the best we can think of is using the Artificial Neural 

Network approach. 
 

According to [2], the ability to effectively and accurately utilize the knowledge garnered from basic sciences to 

bring about pioneering, scholarly and risk-free inventions to the entire world defines and makes a complete 

engineer.  
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No wonder all serious-minded electric machine manufacturers and industrial engineers often find ways of 

minimizing engineering time, reducing prototyping cost and optimizing product quality so that a sustainable 
competitive goal can be achieved. The best way to actualize these objectives is to use simulation software to 

predict the electric machine performance without actually creating prototypes. Without mincing words, the 

application of ANN in forecasting the speed of a dc motor given the input voltage appears very appealing to 
design and manufacturing engineers as they can use prediction as part of the specifications for their design [3]. In 

further sections of this paper, we would clearly examine DC motor modeling in control systems, discuss speed 

prediction using ANN more elaborately by addressing all the stages involved in the simulation process, look into 
the neuro-predictive model of the ANN, and finally present results as well as conclusions of the forecast presented 

in this work. 
 

2. DC Motor Modeling In Control Systems 
 

A dc motor consists of a stationary active part, usually called the field structure, and a moving active part, usually 
called the armature. Both parts carry direct current; hence, it is so called. For effective analytical purposes, 

mathematical models are indispensable. The separately excited dc motor is the simplest of all dc motors and it is 

the one most commonly found in industrial applications. A mathematical model for the separately excited dc 
motor, whose equivalent circuit is shown in Figure 1, is thus established [1, 2]. 
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Fig. 1: Model of a separately excited DC motor 

Where:  

ai  = armature current (A); aR  = armature resistance (Ω); aL = armature inductance (Η) 

ae = applied (input) voltage (volts); be  = back e.m.f (volts); mT = motor torque (Nm) 

LT = load torque (Nm); m = rotor angular velocity (rad/s); m  = rotor displacement (m) 

   = magnetic flux (Weber)  
 

Other motor variables and parameters are defined as: 

mB = viscous friction coefficient (damping ratio of mechanical system) (Kgm
2
/s or Nms) 

mJ  = motor inertia (Kgm
2
); bK  = back e.m.f constant (Nm/A); aK  = motor constant (Nm/A)  

By applying the basic circuit laws and dc motor principles and assigning state variables   as ai , m   and m , the 

state equations are obtained and given in matrix form below: 
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By drawing the state diagram from the state equations and applying Mason‟s gain formula, the dc motor transfer 
function relating speed to voltage is obtained as follows: 
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3. Speed Prediction Using ANN 
 

A neural network comprises simple elements operating in parallel. In fact, it is a massively parallel distributed 

processor that stores experiential knowledge and makes it available for use when needed. ANN is a model of a 

biological neural network. It is mathematical model or computational model based on biological neural networks 
[5]. ANN is an information processing paradigm (highly interconnected network of processing elements) that 

mimics the functioning and connectivity of the human brain [6]. A neural network, just like human beings learns 

by example and it is fault-tolerant. The true power and advantage of neural networks lies in their ability to derive 
meaning from complex or imprecise data [7], [13]. 
 

Back-propagation: In order to train a neural network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. The back-
propagation algorithm is a supervised learning algorithm used to change or adjust the weights of the neural 

network. It is such that the gradient vector of the surface is calculated. This vector points along the direction of 
the steepest descent from the current point, so that a movement over a short distance along it decreases its error. A 

sequence of such moves will eventually find a minimum error point [8].  With back-propagation, the input data is 

repeatedly presented to the neural network. With each presentation, the output of the neural network is compared 
to the desired output and an error is computed. This error is then fed back (back-propagated) to the neural network 

and used to adjust the weights such that the error decreases with each iteration and the neural model gets closer 

and closer to producing the desired output. A number of steps are involved in back-propagation [5], [9], [10]. 
 

1. Initialization: this is usually done before training. Weights and biases must be initialized. Initialization 

means resetting the network weights and biases to their original values. The MATLAB function ‘init’ takes 

a network object as input and returns a network object with all weights and biases initialized. 
2. Training: training and learning functions are mathematical procedures used to automatically adjust the 

network weights and biases. While the former dictates a global algorithm that affects the weights and biases 

of a given network, the latter can be applied to individual weights and biases within a network. ANN 
training basically consists on determining the network parameters such as weights and others, which allow 

achieving the desired objective based on the available training sets. Usually, multilayer feed-forward neural 

networks are trained in a supervised manner according to the back-propagation algorithm. The MATLAB 
function „train’ is used to train a network. Once the training data is assembled, the network object is 

created and then training begins. In this paper, Levenberg Marquardt (LM) back-propagation algorithm 

initiated by MATLAB function ‘trainlm’ is used. It is apparent that out of all back-propagation algorithms 
for function approximation problems, the LM algorithm is the best. Training stops when the performance 

has been minimized to the goal, the performance gradient falls below a minimum gradient, the maximum 

number of epochs is reached, or the maximum amount of time has been executed. 
3. Preprocessing and Post-processing: neural network training can be made more efficient if certain 

processing steps are performed on the network inputs and targets (preprocessing). It is often useful to scale 

inputs and targets before training so that they always fall within a specified range. By this approach, 
improperly recorded and abnormal data are identified and discarded or adjusted using a statistical method to 

avoid contamination of the model. The preprocessing function ‘premnmx’ is used to scale inputs and 

targets so that they fall in the range [-1, 1]. To convert the outputs back to the same units that were used for 
the original target (de-scaling), the post-processing function ‘postmnmx’ is used. 

4. Simulation: the simulation function ‘sim’ simulates the network. It takes the network input and the 

network object, and then returns the network output. Using the trained neural network, the forecast output is 
simulated using the input parameter. 

 

Motor parameter values (derived by experiment from an actual motor in Carnegie Mellon‟s Undergraduate 

Control Laboratory, the University of Michigan United States) were substituted into the equation above and a 
SIMULINK block diagram was constructed to generate input/target pairs for the ANN. Simulations of a particular 

block diagram can be used to test a number of „what-if‟ questions [4], [12]. Overall, the input/target pairs 

generated numbered up to 110 values each, 70 of which were used for training the network with the remaining 40 
presented as unknown to the trained network so a forecast of the speed can be made accordingly. 
 

 

4. Neuro-Predictive Model of the ANN 
 

The algorithm used is such that about 60% of the data records were randomly assigned for training, 20% went for 

testing, and the remaining 20% were relegated to validation.  
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The network training was carried out using the Levenberg-Marquardt (LM) standard back-propagation algorithm 

because of its high speed of convergence and accuracy. The stop criteria were based on the mean-square error 
(MSE) analysis [10]. The best result was obtained for the ANN which comprised twenty neurons in the input 

layer, twenty neurons in the first hidden layer, eighteen neurons in the second hidden layer, and a single neuron in 

the output layer.  The transfer functions used for the four layers were purelin, tansig, purelin, and purelin 
respectively. The inputs were preprocessed using the normalizing technique which sought relevant direction for 

the former so that variance can be maximized. For validation, input/target pairs of untrained data (not known by 

the ANN) were presented to the network to determine how well it predicts the corresponding outputs. 
 

5.  Results 
 

5.1 Graphs and ANN Architecture generated by the LM algorithm 
 

The LM algorithm used yielded four results: 
i. The performance graph 

ii.  The disparity graph  
iii. The regression graph  

iv. The artificial neural network architecture or SIMULINK  

The performance graph shown in Figure 2 indicates the behavior of the network during training, validation and 
testing. The performance goal was met during: 

TRAINLM, Epoch 0/100, MSE 31.4661/1e-005, Gradient 3475.59/1e-010 

TRAINLM, Epoch 5/100, MSE 4.00778e-006/1e-005, Gradient 0.51086/1e-010 
TRAINLM, Performance goal met. 
 

Epoch shows the presentation of the set of training (input and/or target) vectors to the network and the calculation 

of new weights and biases. The performance function is the MSE of the network outputs. Level of discrepancy 
between the targeted output and the simulated (ANN) output is shown by the disparity graph of Figure 3. This 

graph indicates a perfect mapping between the target and the output. The Regression graph shown in Figure 4 

gives the association or relatedness between the outputs and the targets. With R = 1 from the graph, the degree to 
which the outputs and targets are related and change together is 100%. Thus, line of best fit equation is A = 

0.997T + 0.0385. The four-layer fully connected feed-forward artificial neural network generated by the LM 

algorithm shown in Figure 5 includes an input layer, two hidden layers and an output layer. Signal propagation is 
allowed only from the input layer to the first hidden layer, from the first hidden layer to the second hidden layer, 

and from the latter to the output layer. However, the output of the neural network is compared to the target and an 

error is computed. 
 

5.2. Simulated Results 
 

Various input values were used to test the accuracy the ANN results. A number of instances of such are shown in 

Table 1. The dc motor responses for various inputs are shown in Figure 6(a-h). During testing with unfamiliar 

data part of which is shown in the table above, the highest and lowest errors recorded are 0.54% and 0.01% 
respectively. Overall, the entire error values translate to an absolute mean error (AME) of 0.38% for the network. 

This represents a high degree of accuracy in the ability of neural networks to predict speed. 
 

Table 1: summary of a part of the test results 
 

INPUT aE  (V)     TARGET m  (rad/sec) OUTPU m  (rad/sec) 
PERCENTAGE ABSOLUTE ERROR 

10.05 1.0000 1.0040 0.40 

10.85 1.0800 1.0848 0.48 

11.45 1.1400 1.1453 0.53 

11.65 1.1600 1.1654 0.54 

12.85 1.2800 1.283 0.30 

13.65 1.3600 1.3606 0.06 

13.85 1.3800 1.3801 0.01 

13.95 1.3900 1.3906 0.06 
 

6. Conclusion and Future Research 
 

 

The results obtained from this work confirm the relevance as well as the efficiency of neural networks in dc motor  

speed prediction. The ANN approach has proved to be accurate and computationally fast.  



International Journal of Applied Science and Technology                                            Vol. 1 No. 6; November 2011 

203 

 

The use of normalized preprocessing and post-processing techniques proved undoubtedly essential for an 

improved overall performance of the ANN. The training algorithm used, usually applicable to function 
approximation problems, trained the neural network on average, about 55 times faster than the usual back-

propagation algorithms. The mean-square error (MSE) decreased much more rapidly with time, and as the error 

goal was reduced, improvement became more pronounced other than being degraded. However, it must be noted 
that the algorithm described and used in this paper is not applicable to pattern recognition problems or tasks 

involving very large number of weights. What happens is that a relatively poor performance could result and the 

intended goal of prediction may appear erratic. Without any doubt, applications of ANN are multifarious and 
almost endless.  Further studies on this work can take into consideration parameters other than speed. For 

instance, the dc motor position control can be dealt with using ANN. All known methods of dc motor speed 

performance/control should also be examined and compared to the ANN technique so that the most efficient 
technique will be identified. 
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Figure 5: The Artificial Neural Network Architecture 
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(a) At 10.05 volts 

                  
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.00 rps; ANN result = 1.004 rps 

 

(b) At 10.85 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.08 rps; ANN result = 1.0848 rps 
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(c) At 11.45 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.14 rps; ANN result = 1.1454 rps 
 

(d)  At 11.65volt 

 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.16 rps; ANN result = 1.1654 rps 
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(e) At 12.85 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.28 rps; ANN result = 1.283 rps 
 

(f) At 13.65 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.36 rps; ANN result = 1.3606 rps 
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(g) At 13.85 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.38 rps; ANN result = 1.3801 rps 
 

(h) At 13.95 volts 

 
Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.39 rps; ANN result = 1.3906 rps 

 
Figures 6(a) – (h): Step response of the dc motor transfer function for various inputs 
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