
International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

199

Speed Forecast of DC Motor Using Artificial Neural Network

Adepoju G. A.
Department of Electronic and Electrical Engineering

Ladoke Akintola University of Technology

Ogbomoso, Nigeria

Aborisade, D.O

Department of Electronic and Electrical Engineering
Ladoke Akintola University of Technology

Ogbomoso, Nigeria

Eluwole O. T.

Department of Electronic and Electrical Engineering

Ladoke Akintola University of Technology
Ogbomoso, Nigeria

Abstract

Artificial Neural Network (ANN) has achieved a lot of attention as well as gained enormous popularity over the

last two decades owing to its vast applications both in industry and academia. This paper explicitly and
effectively examines the application of ANN to speed forecast of dc motors. The angular speed of a dc motor can

be determined by prediction with given voltage as input parameter. By using motor parameter values and

assigning state variables as armature current, angular speed, and rotor displacement; the dc motor transfer
function relating angular speed to voltage was obtained. With the input (voltage) and speed as the target. A

simulation process was carried out on the transfer function using one of the most commonly used and versatile

technical computing facilities (MATLAB & SIMULINK, version 7.0) to generate various input/target pairs for the
ANN training and testing. Levenberg-Marquardt standard back-propagation algorithm with normalized

preprocessed data was used to predict and show the pattern of correlation of input (voltage) in relation to the

output (speed). The ANN developed comprised 4 layers: an input layer, 2 hidden layers, and an output layer. The
input layer has 20 neurons; the first hidden layer has 20 neurons, the second hidden layer has 18 neurons, while

the output layer has a single neuron. The ANN was able to develop a good mapping between the input and the

target. The results obtained indicated 100% correlation and an absolute mean error (AME) of 0.38% during
testing with unfamiliar input/target data pairs. The former shows a high reliability of the network to predict the

output while the latter represents on an average, a very high degree of accuracy in the prediction.

Keywords: Speed forecast, DC motor, Artificial Neural Network (ANN)

1. Introduction

DC motors are one of the most widely used prime movers in industry today. The advancement made in power
electronics has made brushless dc motors quite popular in high-performance control systems. Peculiar properties

such as very low inertia, very high-torque-to-volume ratio and low-time constant properties have opened

applications for dc motors in computer peripheral equipment such as tape drives, printers, disk drives, word
processors, and automation/machine tool industries [1]. The speed of operation of dc motor is the crux of the

matter in this research work. Carrying out an experiment in the laboratory to study the dc motor speed

performance could prove cost-ineffective and time-consuming especially in a country where we have insufficient
funds to maintain existing research facilities, or to even acquire state-of-the-art facilities. A rational, logical and

analytical thinking suggests that system modeling and simulation of the actual physical system can offer a better

alternative. By this alternative, dc motor speed control can be achieved in a number of ways such as Proportional-
Integral-Derivative (PID) control, state-space control, digital PID control and others. However, when we desire a

reliable and a very accurate dc motor speed forecast, the best we can think of is using the Artificial Neural

Network approach.

According to [2], the ability to effectively and accurately utilize the knowledge garnered from basic sciences to

bring about pioneering, scholarly and risk-free inventions to the entire world defines and makes a complete

engineer.

© Centre for Promoting Ideas, USA www.ijastnet.com

200

No wonder all serious-minded electric machine manufacturers and industrial engineers often find ways of

minimizing engineering time, reducing prototyping cost and optimizing product quality so that a sustainable
competitive goal can be achieved. The best way to actualize these objectives is to use simulation software to

predict the electric machine performance without actually creating prototypes. Without mincing words, the

application of ANN in forecasting the speed of a dc motor given the input voltage appears very appealing to
design and manufacturing engineers as they can use prediction as part of the specifications for their design [3]. In

further sections of this paper, we would clearly examine DC motor modeling in control systems, discuss speed

prediction using ANN more elaborately by addressing all the stages involved in the simulation process, look into
the neuro-predictive model of the ANN, and finally present results as well as conclusions of the forecast presented

in this work.

2. DC Motor Modeling In Control Systems

A dc motor consists of a stationary active part, usually called the field structure, and a moving active part, usually
called the armature. Both parts carry direct current; hence, it is so called. For effective analytical purposes,

mathematical models are indispensable. The separately excited dc motor is the simplest of all dc motors and it is

the one most commonly found in industrial applications. A mathematical model for the separately excited dc
motor, whose equivalent circuit is shown in Figure 1, is thus established [1, 2].

M

Ra La

ia

ea eb

Tm

ωm

θm

TL

Φ

+

_

_

+

Fig. 1: Model of a separately excited DC motor

Where:

ai = armature current (A); aR = armature resistance (Ω); aL = armature inductance (Η)

ae = applied (input) voltage (volts); be = back e.m.f (volts); mT = motor torque (Nm)

LT = load torque (Nm); m = rotor angular velocity (rad/s); m = rotor displacement (m)

 = magnetic flux (Weber)

Other motor variables and parameters are defined as:

mB = viscous friction coefficient (damping ratio of mechanical system) (Kgm
2
/s or Nms)

mJ = motor inertia (Kgm
2
); bK = back e.m.f constant (Nm/A); aK = motor constant (Nm/A)

By applying the basic circuit laws and dc motor principles and assigning state variables as ai , m and m , the

state equations are obtained and given in matrix form below:

Lma

a

m

m

a

mmma

abaa

m

m

a

TJe

Li

JBJK

LKLR

dtd

dtd

dtdi



























































































0

/1

0

0

0

/1

010

0//

0//

/

/

/







 (1)

By drawing the state diagram from the state equations and applying Mason‟s gain formula, the dc motor transfer
function relating speed to voltage is obtained as follows:

)()()(

)(
2

ambaammama

a

a

m

RBKKsLBJRsJL

K

sE

s





 (2)

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

201

3. Speed Prediction Using ANN

A neural network comprises simple elements operating in parallel. In fact, it is a massively parallel distributed

processor that stores experiential knowledge and makes it available for use when needed. ANN is a model of a

biological neural network. It is mathematical model or computational model based on biological neural networks
[5]. ANN is an information processing paradigm (highly interconnected network of processing elements) that

mimics the functioning and connectivity of the human brain [6]. A neural network, just like human beings learns

by example and it is fault-tolerant. The true power and advantage of neural networks lies in their ability to derive
meaning from complex or imprecise data [7], [13].

Back-propagation: In order to train a neural network to perform some task, we must adjust the weights of each

unit in such a way that the error between the desired output and the actual output is reduced. The back-
propagation algorithm is a supervised learning algorithm used to change or adjust the weights of the neural

network. It is such that the gradient vector of the surface is calculated. This vector points along the direction of
the steepest descent from the current point, so that a movement over a short distance along it decreases its error. A

sequence of such moves will eventually find a minimum error point [8]. With back-propagation, the input data is

repeatedly presented to the neural network. With each presentation, the output of the neural network is compared
to the desired output and an error is computed. This error is then fed back (back-propagated) to the neural network

and used to adjust the weights such that the error decreases with each iteration and the neural model gets closer

and closer to producing the desired output. A number of steps are involved in back-propagation [5], [9], [10].

1. Initialization: this is usually done before training. Weights and biases must be initialized. Initialization

means resetting the network weights and biases to their original values. The MATLAB function ‘init’ takes

a network object as input and returns a network object with all weights and biases initialized.
2. Training: training and learning functions are mathematical procedures used to automatically adjust the

network weights and biases. While the former dictates a global algorithm that affects the weights and biases

of a given network, the latter can be applied to individual weights and biases within a network. ANN
training basically consists on determining the network parameters such as weights and others, which allow

achieving the desired objective based on the available training sets. Usually, multilayer feed-forward neural

networks are trained in a supervised manner according to the back-propagation algorithm. The MATLAB
function „train’ is used to train a network. Once the training data is assembled, the network object is

created and then training begins. In this paper, Levenberg Marquardt (LM) back-propagation algorithm

initiated by MATLAB function ‘trainlm’ is used. It is apparent that out of all back-propagation algorithms
for function approximation problems, the LM algorithm is the best. Training stops when the performance

has been minimized to the goal, the performance gradient falls below a minimum gradient, the maximum

number of epochs is reached, or the maximum amount of time has been executed.
3. Preprocessing and Post-processing: neural network training can be made more efficient if certain

processing steps are performed on the network inputs and targets (preprocessing). It is often useful to scale

inputs and targets before training so that they always fall within a specified range. By this approach,
improperly recorded and abnormal data are identified and discarded or adjusted using a statistical method to

avoid contamination of the model. The preprocessing function ‘premnmx’ is used to scale inputs and

targets so that they fall in the range [-1, 1]. To convert the outputs back to the same units that were used for
the original target (de-scaling), the post-processing function ‘postmnmx’ is used.

4. Simulation: the simulation function ‘sim’ simulates the network. It takes the network input and the

network object, and then returns the network output. Using the trained neural network, the forecast output is
simulated using the input parameter.

Motor parameter values (derived by experiment from an actual motor in Carnegie Mellon‟s Undergraduate

Control Laboratory, the University of Michigan United States) were substituted into the equation above and a
SIMULINK block diagram was constructed to generate input/target pairs for the ANN. Simulations of a particular

block diagram can be used to test a number of „what-if‟ questions [4], [12]. Overall, the input/target pairs

generated numbered up to 110 values each, 70 of which were used for training the network with the remaining 40
presented as unknown to the trained network so a forecast of the speed can be made accordingly.

4. Neuro-Predictive Model of the ANN

The algorithm used is such that about 60% of the data records were randomly assigned for training, 20% went for

testing, and the remaining 20% were relegated to validation.

© Centre for Promoting Ideas, USA www.ijastnet.com

202

The network training was carried out using the Levenberg-Marquardt (LM) standard back-propagation algorithm

because of its high speed of convergence and accuracy. The stop criteria were based on the mean-square error
(MSE) analysis [10]. The best result was obtained for the ANN which comprised twenty neurons in the input

layer, twenty neurons in the first hidden layer, eighteen neurons in the second hidden layer, and a single neuron in

the output layer. The transfer functions used for the four layers were purelin, tansig, purelin, and purelin
respectively. The inputs were preprocessed using the normalizing technique which sought relevant direction for

the former so that variance can be maximized. For validation, input/target pairs of untrained data (not known by

the ANN) were presented to the network to determine how well it predicts the corresponding outputs.

5. Results

5.1 Graphs and ANN Architecture generated by the LM algorithm

The LM algorithm used yielded four results:
i. The performance graph

ii. The disparity graph
iii. The regression graph

iv. The artificial neural network architecture or SIMULINK

The performance graph shown in Figure 2 indicates the behavior of the network during training, validation and
testing. The performance goal was met during:

TRAINLM, Epoch 0/100, MSE 31.4661/1e-005, Gradient 3475.59/1e-010

TRAINLM, Epoch 5/100, MSE 4.00778e-006/1e-005, Gradient 0.51086/1e-010
TRAINLM, Performance goal met.

Epoch shows the presentation of the set of training (input and/or target) vectors to the network and the calculation

of new weights and biases. The performance function is the MSE of the network outputs. Level of discrepancy
between the targeted output and the simulated (ANN) output is shown by the disparity graph of Figure 3. This

graph indicates a perfect mapping between the target and the output. The Regression graph shown in Figure 4

gives the association or relatedness between the outputs and the targets. With R = 1 from the graph, the degree to
which the outputs and targets are related and change together is 100%. Thus, line of best fit equation is A =

0.997T + 0.0385. The four-layer fully connected feed-forward artificial neural network generated by the LM

algorithm shown in Figure 5 includes an input layer, two hidden layers and an output layer. Signal propagation is
allowed only from the input layer to the first hidden layer, from the first hidden layer to the second hidden layer,

and from the latter to the output layer. However, the output of the neural network is compared to the target and an

error is computed.

5.2. Simulated Results

Various input values were used to test the accuracy the ANN results. A number of instances of such are shown in

Table 1. The dc motor responses for various inputs are shown in Figure 6(a-h). During testing with unfamiliar

data part of which is shown in the table above, the highest and lowest errors recorded are 0.54% and 0.01%
respectively. Overall, the entire error values translate to an absolute mean error (AME) of 0.38% for the network.

This represents a high degree of accuracy in the ability of neural networks to predict speed.

Table 1: summary of a part of the test results

INPUT aE (V) TARGET m (rad/sec) OUTPU m (rad/sec)
PERCENTAGE ABSOLUTE ERROR

10.05 1.0000 1.0040 0.40

10.85 1.0800 1.0848 0.48

11.45 1.1400 1.1453 0.53

11.65 1.1600 1.1654 0.54

12.85 1.2800 1.283 0.30

13.65 1.3600 1.3606 0.06

13.85 1.3800 1.3801 0.01

13.95 1.3900 1.3906 0.06

6. Conclusion and Future Research

The results obtained from this work confirm the relevance as well as the efficiency of neural networks in dc motor

speed prediction. The ANN approach has proved to be accurate and computationally fast.

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

203

The use of normalized preprocessing and post-processing techniques proved undoubtedly essential for an

improved overall performance of the ANN. The training algorithm used, usually applicable to function
approximation problems, trained the neural network on average, about 55 times faster than the usual back-

propagation algorithms. The mean-square error (MSE) decreased much more rapidly with time, and as the error

goal was reduced, improvement became more pronounced other than being degraded. However, it must be noted
that the algorithm described and used in this paper is not applicable to pattern recognition problems or tasks

involving very large number of weights. What happens is that a relatively poor performance could result and the

intended goal of prediction may appear erratic. Without any doubt, applications of ANN are multifarious and
almost endless. Further studies on this work can take into consideration parameters other than speed. For

instance, the dc motor position control can be dealt with using ANN. All known methods of dc motor speed

performance/control should also be examined and compared to the ANN technique so that the most efficient
technique will be identified.

References

[1] Kuo, B. C. and Golnaraghi, F. “Automatic Control Systems”. Eighth Edition, John Wiley & Sons Inc., 2003.

[2] Faculty of Engineering (2011), “What is Engineering?” University of Western Ontario, Canada.

Available from: http://www.eng.uwo.ca/comms/about.htm [Accessed 30 May 2011]

[3] Okoro, O. I. “Application of Numerical Softwares in Electrical Machines Modeling”, Lautech Journal of

Engineering and Technology. 2(2)2005:16-22
[4] Richard, C. D. (Editor-in-Chief). “The Electrical Engineering Handbook”. Second Edition CRC Press LLC/IEEE

Press, 1997.

[5] Eric, D. and Patrick, N. “DARPA Neural Network Study”. October, 1987 – February, 1989. MIT Lincoln Lab.

Neural Networks.

[6] Bernander, O. and Redmond, W.A. “Neural Network”. Microsoft Student 2008 [DVD]. Microsoft Corporation, 2007.

[7] Stergiou C. and Siganos D., “Neural Networks” Available at: http://www.doc.ic.ac.uk [Accessed 30 May 2011]

[8] Rosenblatt, F. “Principles of Neurodynamics”, Washington D.C., Spartan Press, 1961.

[9] Adepoju, G.A., Ogunjuyigbe S. O. A., and K.O. Alawode. (2007), “Application of Neural Network to Load
Forecasting in Nigerian Electrical Power System”, Pacific Journal of Science and Technology. 8(1):68-72.

[10] The MathWorks Inc. 1992-2008. “Neural Network Toolbox 6, User‟s Guide”. Available at:

http://www.mathworks.com

[11] Masters, T. “Signal and Image Processing with Neural Networks”. John Wiley & Sons Inc. 2003, ISBN 0-471-

04963-8

 [12] Steven, T. K. “Introduction to Simulink with Engineering Applications”. Orchard Publications, 2006.

Available at: http://www.orchadpublications.com

[13] Stuart, J. R. and Peter, N. “Artificial Intelligence: A Modern Approach”. Second Edition, Prentice Hall, New Jersey.

0 1 2 3 4 5
0

5

10

15

20

25

30

35

Epoch

S
q
u
a
re

d
 E

rr
o
r

Performance of Voltage(Ea) vs Speed(Wm) DC motor Training

Training

Validation

Test

Figure 2: The Performance Graph

http://www.eng.uwo.ca/comms/about.htm
http://www.doc.ic.ac.uk/
http://www.mathworks.com/
http://www.orchadpublications.com/

© Centre for Promoting Ideas, USA www.ijastnet.com

204

0 10 20 30 40 50 60 70
9

10

11

12

13

14

15

16

17

time

o
u
tp

u
ts

(t
a
rg

e
t/

s
im

u
la

te
d
)

target

simulated

Figure 3: The Disparity Graph

9 10 11 12 13 14 15 16 17
9

10

11

12

13

14

15

16

17

T

A

Best Linear Fit: A = (0.997) T + (0.0385)

R = 1

Data Points

Best Linear Fit

A = T

Figure 4: The Regression Graph

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

205

4

lz{4,3}

3

lz{3,2}

2

lz{2,1}

1

iz{1,1}

w

p
z

dotprod9

w

p
z

dotprod8

w

p
z

dotprod7

w

p
z

dotprod6

w

p
z

dotprod59

w

p
z

dotprod58

w

p
z

dotprod57

w

p
z

dotprod56

w

p
z

dotprod55

w

p
z

dotprod54

w

p
z

dotprod53

w

p
z

dotprod52

w

p
z

dotprod51

w

p
z

dotprod50

w

p
z

dotprod5

w

p
z

dotprod49

w

p
z

dotprod48

w

p
z

dotprod47

w

p
z

dotprod46

w

p
z

dotprod45

w

p
z

dotprod44

w

p
z

dotprod43

w

p
z

dotprod42

w

p
z

dotprod41

w

p
z

dotprod40

w

p
z

dotprod4

w

p
z

dotprod39

w

p
z

dotprod38

w

p
z

dotprod37

w

p
z

dotprod36

w

p
z

dotprod35

w

p
z

dotprod34

w

p
z

dotprod33

w

p
z

dotprod32

w

p
z

dotprod31

w

p
z

dotprod30

w

p
z

dotprod3

w

p
z

dotprod29

w

p
z

dotprod28

w

p
z

dotprod27

w

p
z

dotprod26

w

p
z

dotprod25

w

p
z

dotprod24

w

p
z

dotprod23

w

p
z

dotprod22

w

p
z

dotprod21

w

p
z

dotprod20

w

p
z

dotprod2

w

p
z

dotprod19

w

p
z

dotprod18

w

p
z

dotprod17

w

p
z

dotprod16

w

p
z

dotprod15

w

p
z

dotprod14

w

p
z

dotprod13

w

p
z

dotprod12

w

p
z

dotprod11

w

p
z

dotprod10

w

p
z

dotprod1

Mux

Mux3

Mux

Mux2

Mux

Mux1

Mux

Mux

weights

IW{4,3}(1,:)'

weights

IW{3,2}(9,:)'

weights

IW{3,2}(8,:)'

weights

IW{3,2}(7,:)'

weights

IW{3,2}(6,:)'

weights

IW{3,2}(5,:)'

weights

IW{3,2}(4,:)'

weights

IW{3,2}(3,:)'

weights

IW{3,2}(2,:)'

weights

IW{3,2}(18,:)'

weights

IW{3,2}(17,:)'

weights

IW{3,2}(16,:)'

weights

IW{3,2}(15,:)'

weights

IW{3,2}(14,:)'

weights

IW{3,2}(13,:)'

weights

IW{3,2}(12,:)'

weights

IW{3,2}(11,:)'

weights

IW{3,2}(10,:)'

weights

IW{3,2}(1,:)'

weights

IW{2,1}(9,:)'

weights

IW{2,1}(8,:)'

weights

IW{2,1}(7,:)'

weights

IW{2,1}(6,:)'

weights

IW{2,1}(5,:)'

weights

IW{2,1}(4,:)'

weights

IW{2,1}(3,:)'

weights

IW{2,1}(20,:)'

weights

IW{2,1}(2,:)'

weights

IW{2,1}(19,:)'

weights

IW{2,1}(18,:)'

weights

IW{2,1}(17,:)'

weights

IW{2,1}(16,:)'

weights

IW{2,1}(15,:)'

weights

IW{2,1}(14,:)'

weights

IW{2,1}(13,:)'

weights

IW{2,1}(12,:)'

weights

IW{2,1}(11,:)'

weights

IW{2,1}(10,:)'

weights

IW{2,1}(1,:)'

weights

IW{1,1}(9,:)'

weights

IW{1,1}(8,:)'

weights

IW{1,1}(7,:)'

weights

IW{1,1}(6,:)'

weights

IW{1,1}(5,:)'

weights

IW{1,1}(4,:)'

weights

IW{1,1}(3,:)'

weights

IW{1,1}(20,:)'

weights

IW{1,1}(2,:)'

weights

IW{1,1}(19,:)'

weights

IW{1,1}(18,:)'

weights

IW{1,1}(17,:)'

weights

IW{1,1}(16,:)'

weights

IW{1,1}(15,:)'

weights

IW{1,1}(14,:)'

weights

IW{1,1}(13,:)'

weights

IW{1,1}(12,:)'

weights

IW{1,1}(11,:)'

weights

IW{1,1}(10,:)'

weights

IW{1,1}(1,:)'

4

ad{4,3}

3

ad{3,2}

2

ad{2,1}

1

pd{1,1}

Figure 5: The Artificial Neural Network Architecture

© Centre for Promoting Ideas, USA www.ijastnet.com

206

(a) At 10.05 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.00 rps; ANN result = 1.004 rps

(b) At 10.85 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.08 rps; ANN result = 1.0848 rps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

Speed

(rad/sec)

Speed
(rad/sec)

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

207

(c) At 11.45 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.14 rps; ANN result = 1.1454 rps

(d) At 11.65volt

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.16 rps; ANN result = 1.1654 rps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

 Speed
(rad/sec)

0 0. 1 1. 2 2. 3 3. 4 4. 5
0

0.

0.

0.

0.

1

1.

1.
Step Response

Time (sec)

 Speed
(rad/sec)

© Centre for Promoting Ideas, USA www.ijastnet.com

208

(e) At 12.85 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.28 rps; ANN result = 1.283 rps

(f) At 13.65 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.36 rps; ANN result = 1.3606 rps

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

 Speed
(rad/sec)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

 Speed
(rad/sec)

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

209

(g) At 13.85 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.38 rps; ANN result = 1.3801 rps

(h) At 13.95 volts

Rise time = 1.23 s; Settling time = 2.1 s; Steady-state speed = 1.39 rps; ANN result = 1.3906 rps

Figures 6(a) – (h): Step response of the dc motor transfer function for various inputs

0 0. 1 1. 2 2.5 3 3. 4 4.5 5
0

0.

0.

0.

0.

1

1.

1.
Step Response

Time (sec)

 Speed
(rad/sec)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

 Speed
(rad/sec)

