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Abstract 
 

Missing values are common in any scientific work. Nine single imputation techniques were compared to 

determine the best technique for estimating missing values when fitting Weibull distributions. Simulation 

technique was used to obtain random variables for the Weibull distributions. Samples of sizes 30, 50, 200 and 300 
were used to simulate the Weibull distribution. To determine the best imputation technique, four error measures 

were used that are the normalized absolute error, root mean square error, index of agreement and root mean 

square error. This study shows that no single imputation technique is the best for each sample size and for each 

percentage of missing values. 
 

Keywords Weibull distribution, Imputation techniques, Performance indicators   
 

1. INTRODUCTION 
 

Missing value is very common in many scientific fields such as statistical, clinical, psychology, environmental 
research and others. In environmental research especially in air pollution modelling, observations are usually 

collected by using specialized machines to obtain air pollutants concentrations, wind speed, wind direction, 

rainfall amount and temperature. These machines sometimes failed to register the observations due to machine 
malfunction and sometimes when the machine needs servicing. This will result in the occurrence of missing 

values. Missing data hinder the ability to make exact conclusion or interpretations about the observation. Thus 

various missing value techniques have been developed to overcome this problem.  
 

Little and Rubin (2002) has discussed about three classifications of missing data that are missing completely at 

random (MCAR), missing at random (MAR) and non-ignorable missing data (NMAR). Missing completely at 

random (MCAR) means that the missing value does not depend on any data or variable either observed or 
missing. The missing data occurs randomly in the datasets. Meanwhile, data are said to be missing at random 

(MAR) if the failure to observe a value does not depend on the value that would be observed. Non-ignorable 

missing data (NMAR) occur when missing values are not randomly distributed across observations. For MCAR 
and MAR, missing values can be deleted. Two common procedures for deletion of missing data are listwise 

deletion and pairwise deletion. Little and Rubin (2002) indicates that listwise deletion is not an appropriate way to 

handle missing data because by deleting the data, it will decrease the sample size and resulting in the decreasing 

of statistical power. Meanwhile the pairwise deletion may preserve more information. Thus imputation of missing 
values should be considered.  The use of single imputation techniques for estimating missing values when fitting 

the Weibull distribution for carbon monoxide data was discussed by Yahaya et al. (2005).  
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They used the mean-based imputation technique and found that the mean estimation method using one datum 

above and one datum below is the best method. The percentage of missing values is about seven percent. The 
mean-based imputation technique was used by Yahaya et al. (2008) to estimate the missing values. They used 

simulation techniques to obtain random observations from five different Weibull distributions that represent left-

skewed distributions, normal distribution and right-skewed distributions. The percentage of missing values used 

was 5%. This simulation study shows that the mean all method is the best imputation method to be used. 
Mohamed Noor Norazian (2008) describes the use of single imputation techniques to estimate missing values for 

a one year hourly PM10 data. They used the linear quadratic and cubic interpolation techniques, nearest neighbour, 

mean-before-after and mean-before as the imputation techniques. Simulated percentage missing values of 5%, 
10%, 15%, 25% and 40% were used. They concluded that the best imputation technique is mean-before-after. 

Junninen et al. (2004) describes in detail various single and multiple imputation techniques that can be used for 

six air quality datasets. They found that the more complex imputation techniques known as hybrid models and 
multiple imputations are better than the other techniques.   
 

Plaia and Bondi (2006) analyzed the space-time variability of PM10 concentration using meteorological variables. 

This paper uses space-time information on PM10 level concentrations in eight monitoring sites that are called Site-
Dependent Effect method (SDEM). Four simulated incomplete data were generated and five methods including 

SDEM have been applied. They found that the best imputation techniques are those that consider both space and 

time information that is the SEDEM method.  Weibull distribution have been used to fit distributions in air 
pollution studies and to determine return periods (Yusoff et al., 2009; Seinfeld and Pandis, 1997; Maffeis ,1998). 

This distribution have also been used successfully in fitting distributions for wind speed (Shoji , 2005; Jaramillo 

and Borja,2004 and Yahaya et al. (2007).  Weibull distribution has also been used in life testing and reliability 

theory.  This paper compares nine single imputation methods for estimating missing values for the Weibull 
distributions of sizes 30, 50, 200 and 300. Five percentages of missing values were chosen at random that are 5%, 

10%, 15%, 20% and 25%. These imputation techniques were chosen because it can be easily computed. 
 

2. MATERIALS AND METHODS 
 

2.1 The Weibull distribution  
 

This distribution was originally derived by Fisher and Tippet in 1928 as an asymptotic extreme value distribution.  
In 1939 the Swedish physicist Weibull derived the same distribution on the basis of practical requirements in the 

analysis of material breaking strength.  It was not until 1951, however, when one of Weibull’s articles received 

wide circulation among engineers concerned with modelling the statistical variation of their data, that this 
distribution became prominent in the engineering community.  Weibull’s name has since been associated with this 

distribution (Bury, 1999).  The Weibull density function contains two parameters, sigma    and mu   .  The 

  value acts as a scale parameter and   value acts as the location parameter that determines the form and 

‘skew’ of the distribution (Piegorsch and Bailer, 1997). 
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The cumulative distribution function (cdf) takes the form  
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where   is the scale parameter and   is the shape parameter. The scale parameter controls the spread of the 

distribution, and the shape parameter controls the form of the distribution. 
 

2.1.2 Single imputation methods 
 

Nine imputation methods were used to deal with missing values that are mean above, mean below, mean above 

below, median above and median below, nearest neighbour, linear interpolation, spline interpolation and 

regression (Yahaya et al., 2005).  The description of method used in this study is provided in Table 1.  

Let  be the n observations of a time series data and k are the missing values that are denoted by  
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 with . Than the observed data with missing values are given by  

 

 

The formulae for the first estimated values using the imputation methods are given in Table 1 according to the 
notations given above.  
 

Table 1 Single imputation methods 
 

2.2 Performance Measures 

Four types of indicators were used to verify the best plotting formula to estimate the parameters of the Frechet 
distribution. Two error measures that is the normalized absolute error (NAE) and the root mean square error 

(RMSE) and two accuracy measures that is index of agreement (IA) and coefficient of determination (R
2
) were 

used. To produce a good estimator, the error measures must approach zero and the accuracy measure should 
approach one. Table 2 gives the formula for the performance indicators. 

 

Table 2 Performance Indicators 
 

3. DATA 
 

Simulation of random variables for Weibull distribution was used to obtain the observed values. The values of the  

shape and scale parameters were chosen to represent various forms of the Weibull distribution. The range of 

values for the shape parameter is  0,5  and for the scale parameter it is from 20 to 90. These values were chosen 
because it represents the Weibull distribution that is often used in air pollution studies in Malaysia (Sedek et al., 

2006; Yusoff et al., 2009; Nurulilyana Sansuddin, 2010). 
 

Sample of sizes 30, 50, 100, 200 and 300 were used. Each of the sample sizes were replicated ten times for each 

Weibull distribution. For each sample sizes, 100000 random variables were generated. Multiplicative congruential 

generator (Law and Kelton, 2000) of the form 

 

  

was used to simulate the random variables.  The above multiplicative congruential generator was found to have 
good statistical properties.  
  

From these simulated Weibull random variables 5%, 10%, 15%, 20% and 30% missing values were created at 

random. Air pollution data are usually obtained using automated machines and it was found that usually about 

less 20% of data are missing (Sedek et al., 2006; Yusoff et al., 2009; Nurulilyana Sansuddin, 2009).  These 
missing values were than estimated using the eleven imputation methods. The errors between observed and 

estimated missing values were then obtained and the best imputation method was obtained.  
 

4. RESULTS AND DISCUSSIONS 
 

The results of the simulation study using mean-based imputation, median-based imputation, nearest neighbour, 

linear interpolation, cubic spline and linear regression are given in this section.    Table 3 gives the result of the 

performance indicators when there are 5% missing values. When sample size is 30, the best technique is nearest 

neighbour and followed by median above and median below respectively. For this case, only the normalized 

absolute error was obtained because the number of missing value is very small. When 𝑛 = 50 median below is 

the best and followed by median above and nearest neighbour. The cubic spline technique dominates for 𝑛 =
200. The median based technique is the next best imputation technique. However, nearest neighbour is the top 

and followed by linear interpolation and median above technique. Overall when the missing value is 5%, the best 
imputation techniques are nearest neighbour and the two median-based techniques. 

 

Table 3 Performance Indicators with 5% missing values  
 

Table 4 shows the performance of the imputation techniques when the percentage of missing value is 10%. When 
the sample size is 30, linear regression technique is found to be the best imputation technique. However, for 

sample sizes 50, 200 and 300, the nearest neighbour is the best. Thus when there are 10% of missing values, the 

technique to be used is the nearest neighbour and this is followed by linear interpolation and mean above. 

280 

* * *

1 2,...,, ky y y k n

* * *

1, 2, 1, 1 1 1 1 2,..., 2 2, 2 1 2 2,...,..., , , , , ,n n n n n n k ny y y y y y y y y y y y   

   12mod397204094 31

1  ii XX



© Centre for Promoting Ideas, USA                                                                                          www.ijastnet .com 
 

Table 4 Performance Indicators with 10% missing values  
 

The results of the imputation techniques for 15% missing values are given in Table 5. For sample of size 30, 

median below gives the best result and for sample size 200, the mean above is the best imputation technique. The 

best imputation technique for sample sizes 50 and 300 is the nearest neighbour.  The best techniques to be 

considered when there are 15% missing values are linear interpolation, nearest neighbour and mean above. 
 

Table 5 Performance Indicators with 15% missing values  
 

Table 6 shows the performance measures at 20% missing values for all studied sample sizes. The best imputation 

technique for  𝑛 = 30 and   𝑛 = 50 is linear interpolation. For 𝑛 = 200 , the best imputation technique is the 

mean below whereas for 𝑛 = 300 median below is the best. This result show that the best imputation technique 

varies according to sample size. However without considering the percentage of missing values, the best 

techniques are linear interpolation, mean above and mean below. Median below is at ranking number four. 
 

Table 6 Performance Indicators with 20% missing values  
 

At 25% missing values, the results of the performance indicators for the imputation techniques are shown in Table 

7. Again the best imputation techniques depend on the sample sizes. Nearest neighbour technique is shown to be 

the best for 𝑛 = 30 and  𝑛 = 50  and is second best for  𝑛 = 200. Median above is best for 𝑛 = 200 and second 

best for 𝑛 = 30 and  𝑛 = 50. Linear interpolation technique is shown to be the best for 𝑛 = 300. At 25% missing 

values, the best technique is nearest neighbour, median below and mean below. 
 

Table 7 Performance Indicators with 25% missing values  
 

We also look the best imputation techniques for each sample size. When the sample sizes are small (𝑛 = 30 and  

𝑛 = 50), the best techniques are median below and nearest neighbour. For 𝑛 = 200, the best techniques are 

median below and median above. For 𝑛 = 300, the best techniques are linear interpolation and nearest neighbour 

with the median above being the fourth best technique. 
 

5. CONCLUSION 
 

Estimating missing values are very important in order to obtain an accurate representation of the data. This paper 

compares nine simple imputation techniques for estimating missing values when fitting the Weibull distribution. 

Weibull distribution was chosen because it is widely used in air pollution studies, hydrologic studies and 
reliability studies. The data for the study was simulated so that it represents air pollutants concentration levels. 

Sample of sizes 30 and 50 were used to represent small sample and with 200 and 300 to represent large sample. 

The percentage of missing values used for this study are 5% representing small percentage of missing values, 
10% and 15% representing medium percentage of missing values ,  20% and 25% representing large percentage 

of missing values.  The results of the study show that no single imputation technique is the best for each sample 

size and for each percentage of missing values. For small sample sizes, the best techniques are median above, 

median below and nearest neighbour and for large sample sizes, the best techniques are medium above, linear 
interpolation and nearest neighbour. This shows that resistant estimators give favourable results because the 

simulated Weibull distributions are skewed to the right and thus contains extreme values. For small percentage of 

missing values, the imputation technique that should be considered are nearest neighbour, median above and 
median below. In contrast, for medium and large percentage of missing values the techniques that should be used 

are linear interpolation and nearest neighbour. 
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6. TABLES AND FIGURES 

Table 1 Single imputation methods 
 

Methods Description and Formula 

Mean Above - The missing values will be replaced by 
the mean value of the above missing data 
 

𝑦1
∗ =

1

𝑛1
 𝑦𝑖

𝑛1

𝑖=1
 

Mean Below- The missing values will be replaced by 
the mean value of the below missing data 
 

𝑦1
∗ =

1

 𝑛2 − 𝑛1 + 1 
 𝑦𝑖

𝑛2

𝑖=𝑛1+1
 

Mean Above Below - The missing values will be 
replaced by the average of one existing data above 

and below the missing values 

𝑦1
∗ =

1

2
 𝑦𝑛1

+ 𝑦𝑛1+1  

(for data ranked from smallest to largest) 

Median Above - The missing value will be replaced 
by the median value of the above missing data 
 𝑦1

∗ =

 
 
 

 
 𝑦  

𝑛1 + 1

2
               𝑛 odd

𝑦  
𝑛1

2  + 𝑦  
𝑛1

2 + 1 

2
 𝑛 even

  

(for data ranked from smallest to largest) 

Median Below - The missing value will be replaced 
by the median value of the below missing data 
 𝑦1

∗ =

 
 
 

 
 𝑦  

𝑛2 − 𝑛1 + 1

2
               𝑛 odd

𝑦  
𝑛2 − 𝑛1 + 1

2  + 𝑦  
𝑛2

2 + 1 

2
 𝑛 even

  

(for data ranked from smallest to largest) 

Linear Interpolation - The missing value will be 
replaced by drawing a straight line between two 
neighbouring data 

𝑦𝑖
∗ = 𝑦0 +  𝑦1 − 𝑦0  

𝑥𝑖 − 𝑥0

𝑥1 − 𝑥0
  

where  and are the initial and last values 

Spline  Interpolation - The missing value will be 

replaced by using low degree polynomials in each of 
the interval point 

  

𝑦𝑖
∗ = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 

where   

Nearest Neighbour - The missing value will be 

replaced by the nearest value  

 

𝑦𝑖
∗ = 𝑦𝑖−1or 𝑦𝑖+1 

Linear Regression - The missing value will be 
replaced by regression of the unobserved variables 
against observed ones for that datasets 

𝑦𝑖
∗ = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖  

where 𝛽0  and 𝛽1are the intercept and slope parameters of the regression 

model and are estimated by the least squares method, is the error term 
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Table 2 Performance Indicators 
 

Measures Formula 

Normalized absolute error (NAE) 


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Root Mean Square Error (RMSE) 
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Index of Agreement (IA)  
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Coefficient of Determination(R2)  

 

*N is the number of observations,𝑂𝑖  is the observed values , 𝑃𝑖 is the predicted values,  𝑂 is the 

average of the observed values,𝑃   is average of predicted values,  𝜎𝑃  is standard deviation of 
observed values  and𝜎𝑂 is standard deviation of observed values.

 

 

Table 3 Performance Indicators with 5% missing values 

 

Imputatio
n 
 Method 

NAE RMSE   IA 

Sample 

size  

30 50 200 300 30 50 200 300 30 50 200 300 30 50 200 300 

Nearest 
28.93
5 

3.30
5 

2.35
7 

0.38
2 

N
A 

65.13
1 

106.8
1 

43.31
0 

N
A 

0.2
5 

0.69
0 

0.76
7 

N
A 

0.50
9 

0.67
5 

0.90
3 

Mean 
Abv 

199.7
4 

4.89
6 

1.54
4 

0.59
6 

N
A 

68.39
6 

72.17
4 

55.61
6 

N
A 

0.2
5 

0.59
7 

0.65
8 

N
A 

0.38
6 

0.64
1 

0.74
6 

Mean AB 
113.9
5 

4.16
2 

1.45
6 

0.68
1 

N
A 

59.06
3 

67.75
1 

61.51
5 

N
A 

0.2
5 

0.71
0 

0.66
4 

N
A 

0.37
7 

0.60
6 

0.64
3 

Mean Bel 
47.13
3 

3.48
1 

1.30
7 

0.58
0 

N
A 

50.71
5 

65.69
7 

55.32
3 

N
A 

0.2
5 

0.57
8 

0.66
5 

N
A 

0.43
9 

0.65
4 

0.74
6 

Med Abv 
100.3
9 

2.67
4 

1.03
8 

0.55
7 

N
A 

53.13
1 

66.44
5 

61.29
0 

N
A 

0.2
5 

0.63
6 

0.76
2 

N
A 

0.47
5 

0.67
9 

0.72
3 

Med Bel 
36.50
7 

1.83
4 

0.77
8 

0.55
9 

N
A 

45.99
7 

58.26
1 

61.59
7 

N
A 

0.2
5 

0.61
5 

0.76
0 

N
A 

0.44
2 

0.69
3 

0.72
1 

Linear 
226.0
7 

5.31
1 

1.78
3 

0.43
4 

N
A 

69.72
1 

80.78
4 

45.98
0 

N
A 

0.2
5 

0.66
8 

0.72
6 

N
A 

0.42
3 

0.68
8 

0.86
9 

Spline 
252.8
2 

6.98
2 

0.81
3 

0.63
5 

N
A 

91.47
2 

58.04
7 

53.15
8 

N
A 

0.2
5 

0.62
1 

0.66
6 

N
A 

0.40
1 

0.72
7 

0.89
7 

Regressio
n 

176.5
2 

5.78
1 

1.33
9 

0.98
7 

N
A 

67.95
2 

70.74
0 

81.70
0 

N
A 

0.2
5 

0.61
4 

0.48
5 

N
A 

0.25
5 

0.40
5 

0.23
5 
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Table 4 Performance Indicators with 10% missing values  
 

Imputati

on  

Method 

NAE RMSE   IA 

Sample 

size  

30 50 200 300 30 50 200 300 30 50 200 300 30 50 200 300 

Nearest 

3.13

2 

0.65

4 

0.64

8 

0.55

1 

236.0

69 

67.2

40 

68.3

68 

64.5

61 

0.33

6 

0.54

8 

0.78

9 

0.80

8 

0.38

3 

0.72

5 

0.80

7 

0.84

2 

Mean 

Abv 

1.46

9 

0.77

4 

0.59

0 

0.59

1 

167.2

83 

76.3

54 

67.1

95 

71.0

37 

0.32

5 

0.42

2 

0.76

8 

0.70

3 

0.52

9 

0.57

8 

0.75

0 

0.72

4 

Mean 

AB 

1.51

2 

0.86

9 

0.65

6 

0.60

1 

165.7

24 

81.4

62 

73.7

01 

61.9

45 

0.39

9 

0.40

9 

0.72

3 

0.74

2 

0.50

0 

0.49

6 

0.64

5 

0.71

1 

Mean 
Bel 

1.61
2 

0.84
1 

0.59
1 

0.59
4 

167.9
96 

79.2
46 

67.0
44 

71.0
86 

0.33
4 

0.39
3 

0.76
2 

0.70
4 

0.49
4 

0.54
4 

0.74
9 

0.72
3 

Med 

Abv 

1.23

9 

0.65

9 

0.66

4 

0.55

2 

167.3

28 

77.1

09 

80.2

10 

76.1

92 

0.34

7 

0.46

8 

0.73

8 

0.71

3 

0.58

2 

0.57

0 

0.63

2 

0.68

9 

Med Bel 

1.14

9 

0.69

7 

0.65

2 

0.55

9 

163.1

36 

79.2

63 

79.1

80 

76.3

92 

0.36

7 

0.50

8 

0.75

1 

0.71

4 

0.57

6 

0.56

4 

0.63

4 

0.68

8 

Linear 

2.23

9 

0.53

9 

0.65

1 

0.50

4 

179.7

13 

76.1

27 

74.4

43 

53.7

89 

0.43

2 

0.40

7 

0.81

2 

0.81

4 

0.47

9 

0.55

7 

0.79

1 

0.81

5 

Spline 

4.45

8 

0.87

9 

1.11

2 

0.73

4 

255.6

31 

73.5

99 

102.

07 

66.5

14 

0.41

3 

0.46

8 

0.78

0 

0.77

0 

0.44

7 

0.72

4 

0.78

7 

0.82

7 

Regressi

on 

1.22

1 

1.04

0 

0.88

1 

0.87

3 

151.6

49 

89.1

10 

87.7

61 

73.5

26 

0.38

1 

0.48

2 

0.60

1 

0.59

8 

0.58

1 

0.33

9 

0.34

1 

0.29

6 
 

Table 5 Performance Indicators with 15% missing values  
 

Imputati

on  

Method 

NAE RMSE   IA 

Sample 

size  

30 50 200 300 30 50 200 300 30 50 200 300 30 50 200 300 

Nearest 

1.16

9 

0.64

7 

0.43

1 

0.29

1 

49.2

42 

66.2

73 

56.3

08 

36.7

81 

0.45

7 

0.56

1 

0.78

9 

0.84

5 

0.70

8 

0.70

3 

0.84

3 

0.93

3 

Mean 
Abv 

0.84
6 

0.64
7 

0.40
6 

0.37
4 

45.4
19 

66.5
41 

37.8
88 

39.9
75 

0.34
0 

0.57
6 

0.79
4 

0.82
1 

0.68
5 

0.69
1 

0.83
8 

0.90
2 

Mean 

AB 

0.82

4 

0.62

9 

0.49

5 

0.46

4 

42.7

56 

66.5

59 

41.7

85 

45.5

91 

0.40

5 

0.57

2 

0.79

7 

0.85

0 

0.58

8 

0.64

7 

0.77

1 

0.85

3 

Mean 

Bel 

0.80

3 

0.68

6 

0.41

2 

0.38

1 

41.2

84 

69.4

69 

37.9

37 

40.1

83 

0.35

5 

0.58

7 

0.79

0 

0.81

9 

0.67

2 

0.63

0 

0.83

6 

0.90

1 

Med 

Abv 

0.70

8 

0.59

7 

0.40

7 

0.32

4 

44.9

89 

76.3

48 

40.5

42 

41.5

70 

0.40

3 

0.47

0 

0.83

8 

0.80

9 

0.67

7 

0.67

9 

0.83

3 

0.87

9 

Med Bel 

0.64

4 

0.71

4 

0.40

3 

0.32

8 

40.3

82 

81.0

46 

40.2

17 

41.8

81 

0.40

5 

0.52

5 

0.83

5 

0.80

4 

0.71

3 

0.60

3 

0.83

2 

0.87

7 

Linear 

0.78

1 

0.67

0 

0.40

4 

0.32

0 

44.1

11 

68.1

59 

46.9

80 

37.6

93 

0.42

0 

0.63

9 

0.77

8 

0.86

8 

0.77

6 

0.69

1 

0.82

0 

0.92

6 

Spline 

2.97

6 

1.28

6 

0.84

2 

0.60

0 

133.

46 

118.

86 

85.2

63 

53.2

34 

0.40

8 

0.58

0 

0.56

1 

0.79

1 

0.56

3 

0.64

6 

0.69

5 

0.91

8 

Regressi

on 

1.00

3 

0.81

8 

0.82

1 

0.86

9 

49.3

67 

75.8

26 

61.3

50 

82.2

99 

0.42

5 

0.55

7 

0.71

6 

0.55

6 

0.55

9 

0.48

6 

0.29

7 

0.24

0 
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Table 6 Performance Indicators with 20% missing values 

  
Imputati

on  

Method 

NAE RMSE   IA 

Sample 

size  

30 50 200 300 30 50 200 300 30 50 200 300 30 50 200 300 

Nearest 

0.84

2 

0.66

9 

0.76

2 

0.28

2 

93.3

36 

86.5

72 

54.2

62 

34.7

45 

0.58

9 

0.66

5 

0.89

8 

0.85

5 

0.76

4 

0.64

6 

0.83

6 

0.93

9 

Mean 

Abv 

0.83

6 

0.62

6 

0.67

5 

0.33

5 

92.6

15 

78.4

30 

42.3

65 

40.4

89 

0.57

7 

0.68

8 

0.84

7 

0.86

7 

0.74

6 

0.72

1 

0.84

8 

0.89

9 

Mean 

AB 

0.84

0 

0.60

6 

0.72

5 

0.44

4 

95.7

91 

83.8

02 

41.5

51 

48.1

44 

0.48

7 

0.63

1 

0.84

7 

0.86

0 

0.67

8 

0.64

0 

0.81

4 

0.81

2 

Mean 

Bel 

0.79

0 

0.52

3 

0.67

4 

0.33

3 

94.3

90 

74.8

23 

42.2

43 

40.9

19 

0.51

7 

0.63

2 

0.84

6 

0.86

7 

0.74

9 

0.72

9 

0.84

8 

0.89

4 

Med 

Abv 

0.76

5 

0.62

5 

0.55

4 

0.35

1 

91.3

55 

84.3

67 

41.8

85 

42.5

72 

0.54

1 

0.63

8 

0.86

8 

0.86

7 

0.73

0 

0.62

9 

0.84

0 

0.88

4 

Med Bel 
0.67
2 

0.58
4 

0.54
3 

0.35
8 

89.1
58 

82.8
11 

41.6
99 

43.6
21 

0.53
0 

0.63
4 

0.86
7 

0.86
6 

0.76
3 

0.63
6 

0.84
0 

0.87
4 

Linear 

0.65

8 

0.54

0 

0.64

0 

0.32

7 

86.6

12 

79.9

23 

43.6

78 

40.9

15 

0.56

6 

0.66

0 

0.86

8 

0.87

0 

0.76

8 

0.69

1 

0.86

5 

0.89

9 

Spline 

1.33

1 

1.17

0 

1.08

1 

0.70

2 

107.

85 

131.

02 

78.1

72 

67.9

49 

0.54

7 

0.60

8 

0.85

4 

0.57

6 

0.69

6 

0.57

1 

0.78

2 

0.70

8 

Regressi

on 

1.09

2 

0.87

1 

0.95

8 

0.85

5 

114.

10 

93.1

30 

55.7

57 

80.2

84 

0.48

7 

0.48

4 

0.66

1 

0.53

8 

0.44

4 

0.51

3 

0.34

3 

0.16

4 
 

Table 7 Performance Indicators with 25% missing values  
 

Imputati

on  

Method 

NAE RMSE   IA 

Sample 

size  

30 50 200 300 30 50 200 300 30 50 200 300 30 50 200 300 

Nearest 

0.52

9 

0.36

2 

0.41

1 

0.40

6 

38.1

19 

32.0

15 

33.5

82 

42.3

51 

0.60

8 

0.76

5 

0.88

3 

0.86

5 

0.84

4 

0.93

9 

0.93

1 

0.90

7 

Mean 

Abv 

0.69

8 

0.37

9 

0.42

0 

0.36

9 

46.9

86 

36.5

25 

33.5

55 

36.8

48 

0.44

5 

0.70

5 

0.88

1 

0.87

3 

0.65

7 

0.89

9 

0.91

6 

0.93

2 

Mean 

AB 

0.62

0 

0.44

1 

0.52

9 

0.44

9 

43.5

40 

37.9

73 

38.3

60 

37.2

69 

0.63

3 

0.70

1 

0.83

9 

0.87

6 

0.79

4 

0.83

8 

0.86

9 

0.89

9 

Mean 

Bel 

0.59

4 

0.38

7 

0.41

7 

0.36

3 

42.7

08 

37.2

64 

33.5

51 

36.6

58 

0.55

1 

0.68

6 

0.87

7 

0.87

1 

0.81

2 

0.88

1 

0.91

7 

0.93

3 

Med 
Abv 

0.52
3 

0.30
5 

0.38
5 

0.33
8 

44.1
87 

32.9
27 

33.4
03 

38.6
49 

0.61
2 

0.74
0 

0.88
6 

0.85
7 

0.81
6 

0.91
0 

0.90
6 

0.92
4 

Med Bel 

0.49

8 

0.36

6 

0.39

2 

0.33

3 

41.5

79 

40.5

54 

33.6

98 

38.6

46 

0.60

0 

0.68

7 

0.88

5 

0.85

6 

0.82

9 

0.86

2 

0.90

6 

0.92

4 

Linear 

0.53

3 

0.41

8 

0.46

8 

0.40

2 

42.7

89 

37.3

60 

33.8

54 

34.8

30 

0.62

1 

0.76

3 

0.86

5 

0.89

6 

0.76

6 

0.88

9 

0.90

8 

0.92

9 

Spline 

1.56

2 

0.43

6 

0.94

9 

0.76

7 

110.

17 

32.9

96 

74.9

02 

78.0

48 

0.55

3 

0.76

8 

0.73

0 

0.79

1 

0.60

5 

0.93

4 

0.80

2 

0.83

5 

Regressi

on 

0.99

3 

0.89

8 

0.90

6 

0.97

0 

56.8

81 

71.8

95 

64.1

17 

72.5

89 

0.54

4 

0.56

0 

0.68

1 

0.64

8 

0.56

7 

0.38

3 

0.35

5 

0.19

7 
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