
International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

50

A Heuristic Checkpoint Placement Algorithm for Adaptive Application-Level Checkpointing

Yanqing Ji

Department of Electrical and Computer Engineering
Gonzaga University, Spokane

WA 99258 USA

Hai Jiang

Department of Computer Science

Arkansas State University

Jonesboro, AR 72467 USA

Vipin Chaudhary

Department of Computer Science and Engineering
University at Buffalo, The State University of New York

Buffalo, NY 14260 USA

Abstract

Checkpoint/rollback is an effective scheme for fault tolerance and has been widely used to reduce the overall
execution time of long-running applications in case of faults. The locations of checkpoints in application

programs are critical since the distance between two consecutive ones determines the checkpointing scheme’s

sensitivity and overheads. If they are too far apart, applications might be insensitive to job failure. That is, the

lost computational time between the point of failure and the end of previous checkpoint would be very large. But
if they are too close, the related checkpointing overheads will slow down the normal computation. This paper

proposes a heuristic checkpoint placement algorithm to improve the checkpointing schemes’ performance in

terms of sensitivity and flexibility. This heuristic algorithm enables automatic and transparent insertion of
checkpoints in user’s source code. Experiments on benchmark programs and real applications demonstrate this

algorithm’s efficiency and sufficiency.

Keywords: Job failure, application-level checkpointing, checkpoint placement algorithm.

1. Introduction

Checkpointing is a common technique for reducing the worst-case execution time of programs in case of faults. It

supports fault tolerance by saving computation states to secondary storage and retrieving them later to resume

execution after a machine fails or crashes (Gupta, Naik, & Beckman, 2011; Jiang & Chaudhary, 2004; Oliner,
Rudolph, & Sahoo, 2006a). Therefore, checkpointing reduces total worst-case execution time of a program by

minimizing the lost processing time (Awasthi, Misra, & Joshi, 2010; Daly, 2003). It is essential for high

performance computing or long-running applications that mail fail. However, to support checkpointing and

minimize overheads, one needs to determine where to insert checkpoints and how to stop and resume
computations. A checkpoint is a location in a program where a thread/process can be checkpointed correctly.

Since the overheads associated with constructing, saving, and retrieving computation states are not negligible

(Greg Bronevetsky, Daniel Marques, Keshav Pingali, Radu Rugina, & McKee, 2008; Jiang, Chaudhary, &
Walters, 2003; John Paul Walters & Chaudhary, 2009), finding appropriate checkpoints is essential.

The distance between two consecutive checkpoints determines the checkpointing algorithm’s sensitivity and
overheads. If they are too far apart, the applications might be too insensitive to job failure since the lost

processing time could be very long. But if they are too close, the related overheads will slow down the actual

computation (Ziv & Bruck, 1997). The trade-off between the re-processing time and checkpointing overheads

leads to an optimal checkpoint placement. Several attempts have been made to find the optimal checkpoint
intervals under certain computing environments and assumptions (Daly, 2003; Oliner, Rudolph, & Sahoo, 2006b;

Young, 1974). However, most such research focused on kernel or user-level checkpointing, i.e., memory

execution image can be treated as the computation state and dumped by certain system or library calls. With such
assumption, checkpointing can take place anywhere anytime with invariant costs. Thus, proper checkpoint

interval can be calculated to provide required fault tolerance functionality without incurring much state

saving/recovering overhead.

© Centre for Promoting Ideas, USA www.ijastnet .com

51

However, in heterogeneous environments, checkpointing becomes much more complicated. First, there is no

universal system call or library call to dump computation states since different operating systems and

architectures use different formats (Manivannan, 2008). There is no sign for a possible convergence. Possibly, we
will see an even wider diversity in the future. For portability, computation states have to be constructed at higher

level, such as application level. Some application-level checkpointing packages such as MigThread abstract

computation states in applications for portability (Jiang & Chaudhary, 2004). When checkpointing happens, the
application can calculate its own state without any help from the system and kernel. MigThread can augment

programs by inserting state construction/retrieval statements during pre-compilation. The users then need to re-

compile this augmented code. One major restriction of application-level checkpointing is that the computation

states cannot be constructed/retrieved anywhere, anytime. Checkpointing can occur only at predefined locations
inserted in the source code and determined at compile time. Thus, it is harder to determine the checkpoint

interval/period (which is a runtime issue) in application-level checkpointing than kernel or user level

checkpointing. Therefore, both timing and location issues should be considered at both compile time and runtime.
For heterogeneous computing such as Grids, application-level approach is the only option (Babar Nazir, Kalim

Qureshi, & Manuel, 2008; Maria Chtepen et al., 2009).

In this paper, we propose a heuristic checkpoint placement algorithm for applications whose computation state
can be constructed at the application level. Our approach is to aggressively insert a lot of potential checkpoints

into users’ programs. Whether a potential checkpoint will be actually activated (i.e. checkpointing will be

triggered) is decided by a scheduler (or server) which could utilize any optimal checkpoint interval estimation
method (e.g Young’s law (Young, 1974)) to determine the actual checkpoint intervals. For example, a timer can

be set on a server to remind applications that it is time for checkpointing. Our algorithm describes how to insert

these potential checkpoints and tries to make programs sensitive enough. This algorithm can transparently insert
checkpoints into the source code so that, at run time, the computation can be properly checkpointed. We make the

following specific contributions in this paper:

 Identify checkpoint placement issues in checkpointing.

 Propose a heuristic scheme to transparently insert checkpoints.

 Evaluate effectiveness and performance of this scheme.

The remainder of this paper is organized as follows: Section 2 provides an overview of application-level
thread/process checkpointing. Section 3 identifies the issues involved in checkpoint placement. We describe the

details of our algorithm in Section 4. In Section 5, we give experimental results on benchmark programs and real

applications. Section 6 is an overview of related work. We wrap up with conclusions and future work in Section
7.

2. Thread/Process Checkpointing

In this section we briefly describe an application-level checkpointing scheme MigThread that is already suited for

this work. We explain some of the reasons of this choice in Section 4.

2.1 MigThread

Since MigThread provides application-level migration and checkpointing functionalities for sequential and

parallel computations in heterogeneous or Grid computing environments (Jiang & Chaudhary, 2004), it is selected
for our heuristic algorithm design and experiments. In MigThread, both coarse-grained processes and fine-grained

threads are supported and both migration and checkpointing are available. But in this paper we only utilize its

checkpointing functionality. For a certain process, its threads can be simultaneously checkpointed to secondary
storage. For process checkpointing, all internal threads as well as their shared global data are processed together.

Typically, computation states consist of process data segments, stacks, heaps and register contents. In MigThread,

the computation state is moved out from its original location (libraries or kernels) and abstracted up to the
language level. Thus, the physical state is transformed into a logical form to achieve platform-independence. Both

the portability and the scalability of stacks are improved.

MigThread consists of two parts: a preprocessor and a run-time support module. The preprocessor is designed to

transform user’s source code into a format from which the run-time support module can construct computation

states precisely and efficiently.

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

52

A powerful preprocessor can improve the transparency of application-level checkpointing. The run-time support

module constructs, saves, and restores computation states dynamically as well as provides other run-time safety

checks (Jiang & Chaudhary, 2004).

2.2 Data Conversion Scheme

The major obstacle preventing application-level checkpointing from achieving widespread use is the complexity
of adding transparent checkpointing to systems originally designed to run stand-alone. Heterogeneity further

complicates this situation. To support heterogeneity, computation states constructed on one platform need to be

interpreted by another. In MigThread, a data conversion scheme, called Coarse-Grain Tagged “Receiver Makes

Right” (CGT-RMR) (Jiang, et al., 2003), is used to tackle data alignment and padding physically, convert data
structures as a whole, and eventually generate a lighter workload compared to existing standards. It accepts ASCII

character sets, handles byte ordering, and adopts IEEE 754 floating-point standard because of its dominance in the

market.

2.3 Checkpointing Safety

Checkpointing safety concerns the correctness of the resumed computation. In other words, computation states

should be constructed precisely, and restored correctly on similar or different machines. The major identified

unsafe factors come from unsafe type systems (such as the one in C programming language), incompatible data

conversion, and third-party library calls. In MigThread, a pointer inference algorithm is proposed to detect the
hidden pointers caused by the unsafe type system. The data conversion scheme, CGT-RMR, supports aggressive

data conversion and aborts state restoration only when “precision loss” event occurs.

3. Issues Affecting Checkpoint Placement

There are two important issues that affect the choice of checkpoint placement methods. First, checkpoint

placement depends on the programming model used in the applications. For example, in some multithreaded or
distributed computing applications with synchronization operations, checkpointing should only occur at these

synchronization points, such as barriers in software Distributed Shared Memory systems (DSMs). Otherwise the

data could be inconsistent. Second, since we are trying to find a general checkpoint placement scheme at the
application-level, the underlying hardware and compilers could dramatically affect whether a heuristic method or

a quantitative approach is chosen. We discuss these issues in the following subsections.

3.1 Programming Paradigms

For sequential applications, checkpoints can be inserted almost anywhere in the program. Even though we mainly
focus on the checkpointing in sequential applications in this paper, our proposed algorithm can be extended to

parallel programming paradigms. In parallel and distributed computing environments, the basic strategy still

works. However, additional complexity due to consistency issues need to be handled. MigThread is a package
that can take care of the consistency of computation states. The shared-address-space programming paradigm

(such as multithreading) is popular because of its simplicity. However, when using this model in distributed

systems, memory consistency models need to be applied to keep consistent data copies across multiple

processors. Since traditional parallel applications adopt the sequential memory consistency model, the data is
always in a consistent state. Thus, no restriction is placed on the locations where the checkpoints are inserted. In

some advanced parallel computing environments, e.g. modern Distributed Shared Memory (DSM) systems (Roy

& Chaudhary, 1998; Taesoon Park & Yeom, 2000; Zhou et al., 1997), relaxed memory models are used to reduce
both the number of messages and the amount of data transferred between processors for better performance.

Under such aggressive models, some virtually shared data could be in inconsistent states when they are between

two synchronization points (barriers), i.e., their copies on physically different machines might have different
values. If checkpointing takes place at these machines at any non-synchronization points, and inconsistent local

copies of data are accessed (especially read) later, the resumed computation could be incorrect. To ensure

correctness, checkpointing can be allowed only at synchronization points or barriers. To improve sensitivity, the
preprocessor could insert light/pseudo-barriers for synchronizing the progress of all threads. When checkpointing

is required, real barriers are invoked to synchronize both progress and data. Such light/pseudo-barriers could

incur extra overheads in some aggressive parallel computations; however, they will improve adaptability by
adding more possible checkpointing locations. Message passing (such as library MPI) is another commonly used

programming paradigm.

© Centre for Promoting Ideas, USA www.ijastnet .com

53

In this model, if migration/checkpointing occurs between send and receive operations, the transit data may not be

accounted and thus lead to data inconsistency. Therefore, in the current version of MigThread,

migration/checkpointing can only be allowed at consistent points (before the send operation and after the receive
operation). Our checkpoint placement algorithm can handle different parallel/distributed programming paradigms

(e.g DSM, MPI), but to make our description clear and for ease of implementation, we focus on sequential

applications in this paper.

3.2 Quantitative vs. Heuristic Methods

We have tried more quantitative methods that statically estimate the execution time of the user program and then

insert checkpoints using existing optimal checkpoint interval estimation methods. In real-time or embedded

system where the missing of a deadline will result in a catastrophic failure, a lot of work has been done regarding

statistical estimation of the execution time (Brandolese, Fornaciari, Salice, & Sciuto, 2001; Giusto, Martin, &
Harcourt, 2001; Malik, Martonosi, & Li, 1997). Most investigations focus on WCET (Worst Case Execution

Time) since it is hard to know the execution path at compile time.

One of the major difficulties in estimating execution time is to find loop bounds which are usually determined by

the input of programs. For most current solutions, users are required to input these loop bounds (Li, Stewart, &

Fuchs, 1994). This method is viable since programs in real-time or embedded systems are usually very simple and

small. But for complex applications in scientific computing, it is impossible to ask users to input the upper bound
for each loop. Another drawback of these methods is that the algorithms are machine-dependent. Since we are

targeting an application-level and machine-independent checkpointing algorithm, such solutions are not

applicable. Furthermore, caches and compiler optimizations, such as loop unrolling and software pipelining, make
it harder to estimate the execution time of a program. Our experience shows that a quantitative approach is

unsuitable for achieving stable results at application-level.

4. Heuristic Algorithm for Checkpointing

Since MigThread is implemented at application-level, we have to insert certain code into user programs in order
to enable checkpointing functionality. The challenge is to detect proper locations in the code and treat them as

checkpoints while maintaining an appropriate distance between two checkpoints.

Figure 1. General mechanism for checkpoint placement

Instead of selecting actual checkpoints, our solution is to aggressively insert potential checkpoints. Whether these
checkpoints will be actually executed is determined by a scheduler (or server) which is executed in the

background, as shown in Figure 1. That is, at compile time, the preprocessor inserts a lot of potential checkpoints.

At run time, once the scheduler determines that a thread/process needs to be checkpointed according to any
optimal checkpoint interval algorithm, it sends a signal to MigThread. The signal handler will set the checkpoint

flag (chk_flag), and the corresponding thread/process will be actually checkpointed at the next potential

checkpoint. We will give more details in the next two subsections. Another feature of our algorithm is that the

computation state is constructed only when checkpointing indeed happens. The preprocessor of MigThread has
collected all related variables at the beginning of functions whereas other systems (Chanchio & Sun, 2001;

Ramkumar & Strumpen, 1997; Ssu & Fuchs, 1998) need to report variables one-by-one at checkpoints during

migration/checkpointing. Therefore, the cost of MigThread is much lower so that more checkpoints can be
inserted. And this is one of the main reasons to select MigThread system for our algorithm here.

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

54

4.1 Potential Checkpoints

The code that establishes a checkpoint is a subroutine named checkpoint(). The preprocessor of MigThread has to

be improved so that it can insert checkpoints into user’s source code. Detecting proper locations for checkpoints
at compile time might not always be possible since some code relies on dynamic inputs. In many applications,

loops consume most of the execution time in a program. If their bounds are not known statically, it is hard to

insert checkpoints properly. For example, in Figure 2, the preprocessor may not be able to determine where the
checkpoint() subroutine should be inserted.

Figure 2. Loops with unknown upper bound

If the preprocessor inserts checkpoint() subroutine inside the loop, the thread/process checkpointing might occur

during each iteration. With a simple iteration code in this example, checkpointing can take place too frequently.

Since the overhead introduced by checkpointing activity is not negligible, frequent checkpointing will greatly

affect the performance of user’s application. However, if the preprocessor places the checkpoint() call after the
loop, the interval between two checkpoints could be so long as to make the system insensitive to failures. We

solve this dilemma by inserting a potential checkpoint in each loop, whereas the scheduler determines whether a

checkpoint needs to be actually set (Figure 1). In this way, the code block in Figure 2 can be transformed as in
Figure 3. If no checkpointing happens, the only operation is to check a flag variable in the runtime support

module linked with applications.

Figure 3. Potential checkpoints in loops with unknown upper bound

Note that inserting if statements, especially in a loop, may degrade the performance of user’s program on modern

microprocessors since it affects compiler optimizations. However, this issue is unavoidable for application-level

solutions. And our experiments in Section 5 show that the overhead is acceptable.

4.2 Potential Checkpoint Placement Rules

To enable checkpointing, we modified the preprocessor of MigThread to analyze the source code and

automatically insert appropriate potential checkpoints accordingly. Then, the transformed code will be recompiled
and linked with MigThread run-time library. Thereafter, the program is ready for checkpointing.

To insert potential checkpoints, the preprocessor has to analyze the structure and different components of user’s
source code. Usually, programs consist of loops, common non-loop code blocks, function calls, and library calls.

Besides, the preprocessor has to take care of some special statements such as return, exit, and so on. We will

describe the general rules for inserting potential checkpoints in the following subsections.

4.2.1 Loops

Based on the analysis in Section 3, we have to specially take care of loops in user’s source code. In general, we
apply the following rules to insert the potential checkpoints.

 for (i = 0; i < upperBound; i++) {

 sum += func(i);}

 printf(“%d”, sum);

 for (i = 0; i < upperBound; i++) {

 sum += func(i);

 if (chk_flag == 1) {

 checkpoint();

 }

 }
 printf(“%d”, sum);

© Centre for Promoting Ideas, USA www.ijastnet .com

55

Figure 4. Potential checkpoints for loops

Figure 4 shows our scheme for inserting potential checkpoints into loops. Here we use potential_check_point() to

represent the code of a potential checkpoint (i.e. the if block shown in Figure 1 and 3). For loop 1, we insert one

potential checkpoint at the last line of this loop. Loop 2 is a nested loop, thus the potential checkpoint is inserted

inside the innermost loop. Loop 3 is in parallel with loop 2 and both of them are inside the same outer loop (the
while loop). We also insert a potential checkpoint in loop 3. The key idea is that we insert at least one potential

checkpoint for each loop since we might not know the loop bounds at compile time.

4.2.2 Non-Loop Code and Functions

We argue that the non-loop code is never too long in scientific computations. The experiments in Section 5 also

verify this notion. Therefore, we can ignore non-loop code when we try to find the proper place for potential

checkpoints. However, even if there is no loop in a subroutine, recursive functions and nested calls could consume
a long period of time. So, in this case, we also need to insert potential checkpoints.

In our scheme, branch instructions are also considered as non-loop code. However, since branch instructions are

often used together with “exit” and “return” instructions which may result in different execution path, we have to
make sure there is at least one potential checkpoint in each path. Otherwise, long intervals could exist through

recursive calls or nested calls.

Rules for loops:

 One potential checkpoint is inserted right after the last statement of every loop.

This rule guarantees the sensitivity of our system since it avoids long interval

between two consecutive potential checkpoints.

 In case of nested loop, potential checkpoints are inserted inside the innermost loop

since the code in inner loop will also be executed in its outer loop.

 Within the same outer loop, if there are multiple nested loops in parallel, one

potential checkpoint needs to be inserted in each of them.

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

56

In summary, we apply the following rules to insert potential checkpoints in non-loop code and functions.

Figure 5 gives our scheme for dealing with non-loop code and function calls. In this segment of code, function

subsubroutine() is called by subroutine() which, in turn, is called by another function test(). Since there is no loop
and “return” in subroutine(), we insert one potential checkpoint at the end of this function. However, in function

subsubroutine(), the potential checkpoint is added before the “return” instruction. In function test(), one potential

checkpoint is inserted right before the “return” instruction inside the “if” structure because the branch instruction

determines a different path. In addition, another potential checkpoint is inserted at the end of test() function since
the first potential checkpoint may not be actually executed.

Figure 5. Potential checkpoints for sequential code and function call

4.2.3 Library Call and I/O Operations

Library calls can cause problems for all application-level checkpointing schemes including MigThread since all
these schemes require access to source code. Without the source code of libraries, the preprocessor cannot insert

potential checkpoints into the library functions. Actually, this is one of the main disadvantages of application-

level checkpointing schemes (Li, et al., 1994; Sun, Naik, & Chanchio, 1999). However, to achieve better

portability of the application-level approach, it is reasonable to give up the sensitivity during the third-party
library call procedures. Luckily, the execution time of most library calls is relatively short. I/O operations also

have the potential of increasing the time between two consecutive potential checkpoints. The reason is that the

cost of I/O operations depends on the data volume and external factors such as network bandwidth. Our
assumption is that I/O is not a proper time for checkpointing.

5. Experimental Results and Performance Analysis

To evaluate our checkpoint placement mechanism, Matrix Multiplication, Molecular Dynamics (MD) simulation

and several applications from the SPLASH-2 application suite are chosen for experiments. SPLASH-2 is selected
because it is one of the most widely accepted benchmarks. Matrix Multiplication is small, but it is a representative

computation-intensive application. Even though we are primarily interested in the overhead ratio and the size of

the application does not matter; we still want to know how our scheme affects large real applications. That is why

we chose a Molecular Dynamics (MD) application which is used to study friction forces of sliding hydroxylated
α-aluminum oxide surfaces (Jin, Song, & Hase, 2000).In this paper, since we are concerned with the overhead

introduced by the potential checkpoints, we did experiments with sequential applications on a single machine. We

are also interested in the sensitivity of our checkpoint placement mechanism.

Rules for non-loop code and functions:

 Non-loop instructions including branch instructions will be ignored since they

usually do not consume a lot of time.

 For each subroutine, at least one potential checkpoint is inserted. If no loop exists,

we insert the potential checkpoint at the end of that subroutine.

 To ensure at least one potential checkpoint for each execution path, we insert a

potential checkpoint before any “break” or “return” statement.

© Centre for Promoting Ideas, USA www.ijastnet .com

57

5.1 Overhead of Potential Checkpoints

Our first experiment is to test the overall overheads associated with our algorithm. In this experiment, the actual

checkpointing overheads are ignored by intentionally setting all checkpointing flags (chk_flag) to 0. In this case,

the overhead tested comprises of two parts: the first part is the time for checking the checkpointing flag at each
potential checkpoint; the second part is the overhead introduced by inserting potential checkpoints since inserting

statements into a loop will affect the pipeline and cache usages of the original program.

Table 1 Potential checkpoints overhead in real applications

Table 1 shows the overheads of six applications. We are interested in the overhead ratio R, which is defined as the
ratio between the average overhead and the execution time of original program. In other words

 R = (t1 – t0)/t0 (1)

where t1 and t0 represent the execution time of the application with potential checkpoints and without potential
checkpoints, respectively.

From Table 1, we can see that matrix multiplication is the only application whose overhead ratio is greater than

2% because it is a computation-intensive application with many small loops. For about half of the applications,

their overheads are less than 1%. Therefore, the overhead introduced by our algorithm is acceptable. Intuitively,
real applications suitable for checkpointing usually execute for a long time, and some of them even run for several

weeks or months. In order to test the scalability of the proposed mechanism in terms of the input size of an

application, we randomly choose FFT and LU-c from the above six applications for experiments. For each
application, the same experiments are performed, but with different input sizes. Their overhead ratios against

input sizes are shown in Figure 6.

Figure 6. Scalability of the algorithm on two applications

We can see that there is no significant increase of the overhead ratio when the input size increases. Since most
potential checkpoints are inserted inside loops in a program, the increase of the input size will cause the increase

of loop bounds, and thus proportionally increase the overheads associated with the potential checkpoints. As a

result, the overhead ratio will keep a relative constant value (equation [1]). Therefore, this algorithm is also
applicable to large problems.

5.2 Sensitivity Analysis

We are concerned with the scheme’s response time, i.e., the time span between the scheduler’s checkpointing

decision-making and the occurrence of actual checkpointing. The response time tr can be expressed as follows:
 tr = ts + tp/2 (2)

where ts is the startup time consumed by sending and receiving a signal and setting the checkpointing flag in the

signal handler, and tp is the average time between two consecutive potential checkpoints.

Program Input size
Exec. time without

checkpoints (us)

Exec. time with

checkpoints (us)

 Overhead

 ratio (%)

FFT 1,024 points 3,574 3,620 1.287

LU-c 512 x 512 2,270,464 2,293,040 0.994

LU-n 128 x 128 40,135 40,754 1.542

MatMult 128 x 128 146,810 149,883 2.093

RADIX 262,144 keys 918,865 921,939 0.334

MD 5,286 atoms 18,823,604 18,903,475 0.424

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

58

Although checkpointing requests can be generated by the scheduler at any time, in MigThread, actual

checkpointing can only take place at discrete potential checkpoints. The average polling time between two

consecutive potential checkpoints is tp/2. Thus, the response time, from the moment of checkpointing decision-
making to the moment of actual checkpointing, is ts + tp/2. Since ts is usually very small, response time tr mainly

depends on tp.

Table 2. Potential checkpoint distribution

In this experiment, we try to figure out the time distribution of all the intervals between two consecutive potential
checkpoints in a program. For each application, the number of intervals within different time ranges is recorded,

as shown in Table 2. It is clear that more than 99.99% intervals are less than 10 us, and no one is greater than 10
4

us. Therefore, this experiment is consistent with our previous prediction: the non-loop code is never too long, and
within the same outer loop, the non-loop part (other than the inner loops) is not very long.

However, are the intervals ranging between 10
3
 ~ 10

4
 us acceptable or too long, even though they are very rare?

Actually, the acceptable distance between two consecutive potential checkpoints, or the frequency of potential
checkpoints in a program, is governed by the tolerance to the actual checkpointing cost (Sun, et al., 1999). This

cost (in terms of time) should not exceed a certain fraction of the time spent on useful work since the last

checkpointing. If the response time is less than or comparable to the checkpointing cost, meaning that the
response time is much less than the time spent on useful work, it is acceptable.

According to the homogeneous thread migration applications used in (Jiang & Chaudhary, 2002), for most

applications the migration overhead is about several ms, which is comparable to the worst interval between two
consecutive potential checkpoints as shown in Table 2. In MigThread, the implementation of checkpointing is

similar to that of migration. The only difference is that checkpointing saves computation states into secondary

storage instead of migrating them to another machine. Thus, we argue that the overhead of checkpointing should

be of the similar order as the overhead of migration. We expect that the cost of process checkpointing is to be
bigger than thread checkpointing due to larger stacks and heaps. In a heterogeneous environment, since

MigThread has to handle the data conversion between different platforms, the cost will only increase. Based on

the above facts, the response time, and hence the sensitivity of the proposed checkpoint placement algorithm is
acceptable.

In order to test whether the potential checkpoint distribution is scalable, same experiments on FFT, LU-c,
MatMult and RADIX are conducted as above, but with different input sizes for each application. The

experimental results are presented in Tables 3, 4, 5 and 6. Other applications follow the same trend. These tables

show that the increase of input size does not generate longer intervals, and if the number of intervals within

certain range is big enough, its increase is statistically proportional to the increase of input size (as shown in the
left two columns or the last three rows).

Table 3. Scalability of potential checkpoint distribution for FFT

Program Input size
 Potential checkpoint intervals in certain time ranges (us)

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105

FFT 1,024 points 24,778 15 3 1 0 0

LU-c 512 x 512 48,259,893 4,898 553 148 0 0

LU-n 128 x 128 787,569 96 17 4 0 0

MatMult 128 x 128 2,113,415 227 18 7 0 0

RADIX 262,144 keys 2,368,721 810 30 10 0 0

MD 5,286 atoms 137,443,856 62,050 956 418 0 0

Input size
 Potential checkpoints intervals in certain time ranges (us) – FFT

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105

210 points 24,778 15 3 1 0 0

212 points 110,968 61 5 2 0 0

214 points 492,161 236 12 4 0 0

216 points 2,163,463 976 23 10 0 0

218 points 9,436,658 3,975 83 39 0 0

220 points 40,884,903 16,230 329 166 0 0

© Centre for Promoting Ideas, USA www.ijastnet .com

59

Table 4. Scalability of potential checkpoint distribution for LU-c

Table 5. Scalability of potential checkpoint distribution for MatMult

Table 6. Scalability of potential checkpoint distribution for RADIX

6. Related Work

Regarding how to insert checkpoints (or migration points), three methods have been proposed. The first approach

is that checkpoints are inserted by users or initiated at a barrier (Abdel-Shafi, Speight, & Bennett, 1999). This

method is straightforward, but it brings undue burden on inexperienced programmers who do not know the
structure and workload of their applications. And for some large and complex applications where many

developers are involved, it is very difficult to insert checkpoints by users. SNOW (Sun, et al., 1999) handles

migration points by counting the number of floating point operations. That is, it inserts a migration point after a
certain number of floating point operations. Since we do not always know the upper bound of a loop at compile

time, this scheme has difficulties in counting the operations inside a loop. Furthermore, this scheme is not

applicable to non-scientific applications where most operations may not be floating point operations. Our

discussion in Section 3.2 has shown the difficulties of a quantitative method because of caches and compiler
optimizations. Therefore, such approach might be inaccurate under many circumstances.

The checkpoint placement approach in (Li, et al., 1994) is similar to ours, but it has some limitations. Their
approach also inserts potential checkpoints inside loops, but instead of using a scheduler, it uses a counter to

determine when checkpointing actually occurs. The counter is initially set to a value, called “reduction factor”,

and it is reduced by one for each loop. When the counter is equal to zero, the program does actual checkpointing.
This scheme can only insert potential checkpoints at certain sparse points, and its counter calculation causes

larger overhead than checking a variable in our scheme. With many small loops or loops with unknown upper

bounds, checkpointing might not take place for a long time. Therefore, this method is insensitive to failures since

checkpointing is only allowed at sparse points. One of the major advantages of our proposed scheme is that it is
generic for both thread/process checkpointing. Since it can tolerate more checkpoints, the applications can be

more sensitive to their dynamic situations. On the contrary, other schemes only allow checkpointing at very

sparse points. Furthermore, our scheme has the potential to work with more complex schedulers, which could be
very important for meta-computing or Grid computing (Cicerre, Madeira, & Buzato:, 2006; Zhu, Xiao, Xu, & Ni,

2006). Grids are typical heterogeneous computing environments. Portability is a critical issue.

Input size
 Potential checkpoints intervals in certain time ranges (us) – LU-c

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105

64 x 64 104,053 21 3 1 0 0

128 x 128 787,695 106 11 4 0 0

256 x 256 6,122,137 821 37 25 0 0

512 x 512 48,259,893 4,898 287 148 0 0

1024 x 1024 383,206,760 37,725 27,08 1,417 0 0

Input size
 Potential checkpoints intervals in certain time ranges (us) – MatMult

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105

32 x 32 33,818 6 2 1 0 0

64 x 64 266,252 45 7 3 0 0

128 x 128 2,113,415 227 18 7 0 0

256 x 256 16,841,117 1,719 109 66 0 0

512 x 512 134,465,435 13,473 952 527 0 0

Input size
 Potential checkpoints intervals in certain time ranges (us) – RADIX

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105

4,096 keys 47,112 17 2 1 0 0

16,384 keys 157,666 54 4 2 0 0

65,526 keys 599,883 200 10 4 0 0

262,144 keys 2,368,721 810 30 10 0 0

1,048,576 keys 9,444,073 3,245 94 49 0 0

International Journal of Applied Science and Technology Vol. 1 No. 6; November 2011

60

Thus, application-level checkpointing is the only option since on different platforms computation states will be

represented differently. Common kernel-level and user-level approaches are only applicable on homogeneous
clusters. Our target is application-level approach which will be adopted by Grids because of its heterogeneity

nature.

7. Conclusions and Future Work

We have proposed a heuristic checkpoint placement algorithm which can be incorporated into application-level

checkpointing packages, such as MigThread. According to our experiments on SPLASH-2 benchmark programs

and the Molecule Dynamics simulation application, our algorithm inserts sufficient potential checkpoints for high
sensitivity. However, some programmers might apply unstructured programming styles which cause sparse

potential checkpoints. For such applications, users can always insert potential checkpoints manually. At each

potential checkpoint, the scheduler will decide whether an actual checkpointing should occur or not according to
system workload, application requirements, and optimal checkpoint interval algorithms. Contrary to the

approaches adopted in many other research projects, our algorithm is more flexible, realistic, adaptive and

sensitive to system requirements. We have demonstrated the efficacy of our algorithm using several benchmarks

and real applications. We are currently investigating a more elaborate scheduler to make a choice of data, thread
or process migration/checkpointing for better data locality and communication minimization. Such scheduling

processes will further indicate if the potential checkpoints inserted by this algorithm are sufficient. This algorithm

helps improve applications’ adaptability and sensitivity in heterogeneous distributed computing environments.

Acknowledgment

This research was supported in part by NSF grants IGERT 9987598, NSF MRI 9977815, and NSF ITR 0081696.

References

Abdel-Shafi, H., Speight, E., & Bennett, J. K. (1999). Efficient user-level thread migration and checkpointing on
Windows NT clusters. Paper presented at the Proceedings of the 3rd USENIX Windows NT Research

Symposium, Seattle, Washington

Awasthi, L. K., Misra, M., & Joshi, R. C. (2010). A weighted checkpointing protocol for mobile distributed

systems. Int. J. Ad Hoc Ubiquitous Comput., 5(3), 137-149.

Babar Nazir, Kalim Qureshi, & Manuel, P. (2008). Adaptive checkpointing strategy to tolerate faults in economy
based grid. The Journal of Supercomputing, 50(1), 1-18.

Brandolese, C., Fornaciari, W., Salice, F., & Sciuto, D. (2001). Source-Level Execution Time Estimation of C

Programs. Paper presented at the IEEE International Workshop on Hardware Software Co-Design,

Copenhagen, Denmark.

Chanchio, K., & Sun, X.-H. (2001, April). Data Collection and Restoration for Heterogeneous Process

Migration. Paper presented at the Proceedings of 21st International Conference on Distributed Computing

Systems, San Francisco, CA.

Cicerre, F. R. L., Madeira, E. R. M., & Buzato:, L. E. (2006). Structured process execution middleware for Grid
computing. Concurrency and Computation: Practice & Experience, 18(6), 581 - 594.

Daly, J. (2003). A model for predicting the optimum checkpoint interval for restart dumps. Paper presented at the

Proceedings of the International Conference on Computational Science.

Giusto, P., Martin, G., & Harcourt, E. (2001). Reliable Estimation of Execution Time of Embedded Software.

Paper presented at the Proceedings of the Conference on Design, Automation, and Test in Europe,
Munich, Germany.

Greg Bronevetsky, Daniel Marques, Keshav Pingali, Radu Rugina, & McKee, S. A. (2008). Compiler-Enhanced

Incremental Checkpointing for OpenMP Applications. Paper presented at the Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of parallel programming.

Gupta, R., Naik, H., & Beckman, P. (2011). Understanding Checkpointing Overheads on Massive-Scale Systems:

Analysis of the IBM Blue Gene/P System. Int. J. High Perform. Comput. Appl., 25(2), 180-192.

Jiang, H., & Chaudhary, V. (2002, August). MigThread: Thread Migration in DSM Systems. Paper presented at

the Proceedings of the Workshop on Compile/Runtime Techniques for Parallel Computing, held with
International Conference on Parallel Processing, Vancouver, Canada.

© Centre for Promoting Ideas, USA www.ijastnet .com

61

Jiang, H., & Chaudhary, V. (2004, January 5-8). Process/Thread Migration and Checkpointing in Heterogeneous

Distributed Systems. Paper presented at the Proceedings of the 37th Hawaii International Conference on
System Sciences, Hawaii.

Jiang, H., Chaudhary, V., & Walters, J. P. (2003, October 6-9). Data Conversion for Process/Thread Migration

and Checkpointing. Paper presented at the Proceedings of International Conference on Parallel

Processing Kaohsiung, Taiwan.

Jin, R. Y., Song, K., & Hase, W. L. (2000). Molecular Dynamics Simulations of the Structures of
Alkane/Hydroxylated α-Al2O3(0001) Interfaces. Journal of Physical Chemistry B, 104(12), 2692–2701.

John Paul Walters, & Chaudhary, V. (2009). Replication-Based Fault Tolerance for MPI Applications IEEE

Transactions on Parallel and Distributed Systems, 20(7), 997-1010.

Li, C.-C. J., Stewart, E. M., & Fuchs, W. K. (1994). Compiler assisted full checkpointing. Software - Practice and
Experience, 24(10), 871-886.

Malik, S., Martonosi, M., & Li, Y.-T. S. (1997, June). Static timing analysis of embedded software. Paper

presented at the Design Automation Conference, Anaheim, CA.

Manivannan, D. (2008). Checkpointing and rollback recovery in distributed systems: existing solutions, open

issues and proposed solutions. Paper presented at the Proceedings of the 12th WSEAS international
conference on Systems.

Maria Chtepen, Filip H.A. Claeys, Bart Dhoedt, Filip De Turck, Piet Demeester, & Vanrolleghem, P. A. (2009).

Adaptive Task Checkpointing and Replication: Toward Efficient Fault-Tolerant Grids. IEEE

Transactions on Parallel and Distributed Systems, 10(2), 181-192.

Oliner, A. J., Rudolph, L., & Sahoo, R. K. (2006a). Cooperative checkpointing: a robust approach to large-scale

systems reliability. Paper presented at the Proceedings of the 20th annual international conference on

Supercomputing.

Oliner, A. J., Rudolph, L., & Sahoo, R. K. (2006b, June 28). Cooperative checkpointing: a robust approach to
large-scale systems reliability. Paper presented at the Proceedings of the 20th Annual International

Conference on Supercomputing, Cairns, Australia.

Ramkumar, B., & Strumpen, V. (1997, 24-27 Jun). Portable Checkpointing for Heterogeneous Architectures.

Paper presented at the 27th International Symposium on Fault-Tolerant Computing, Seattle, WA.

Roy, S., & Chaudhary, V. (1998). Strings: A High-Performance Distributed Shared Memory for Symmetrical
Multiprocessor Clusters. Paper presented at the Proc. of IEEE Conf. on High Performance Distributed

Computing.

Ssu, K.-F., & Fuchs, W. K. (1998, 23-25 Jun). PREACHES - Portable Recovery and Checkpointing in

Heterogeneous Systems. Paper presented at the Proceedings of the The Twenty-Eighth Annual
International Symposium on Fault-Tolerant Computing Munich, Germany.

Sun, X.-H., Naik, V. K., & Chanchio, K. (1999, March 22-24). A Coordinated Approach for Process Migration in

Heterogeneous Environments. Paper presented at the Ninth SIAM Conference on Parallel Processing for
Scientific Computing, San Antonio, TX.

Taesoon Park, & Yeom, H. Y. (2000). A Low Overhead Logging Scheme for Fast Recovery in Distributed Shared

Memory Systems. The Journal of Supercomputing, 15(3), 295-320.

Young, J. W. (1974). A first order approximation to the optimum checkpoint interval. Communications of the

ACM 17(9), 530 - 531.

Zhou, Y., Iftode, L., Sing, J. P., Li, K., Toonen, B. R., Schoinas, I., et al. (1997). Relaxed Consistency and
Coherence Granularity in DSM Systems: A Performance Evaluation. ACM SIGPLAN Notices 32(7), 193 -

205

Zhu, Y., Xiao, L., Xu, Z., & Ni, L. M. (2006). Incentive-based scheduling in Grid computing. Concurrency and
Computation: Practice & Experience, 18(14), 1729 - 1746

Ziv, A., & Bruck, J. (1997). An On-Line Algorithm for Checkpoint Placement. IEEE Transactions on Computers,

46(9), 976--985.

