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Abstract  
 

Checkpoint/rollback is an effective scheme for fault tolerance and has been widely used to reduce the overall 
execution time of long-running applications in case of faults. The locations of checkpoints in application 

programs are critical since the distance between two consecutive ones determines the checkpointing scheme’s 

sensitivity and overheads. If they are too far apart, applications might be insensitive to job failure. That is, the 

lost computational time between the point of failure and the end of previous checkpoint would be very large. But 
if they are too close, the related checkpointing overheads will slow down the normal computation. This paper 

proposes a heuristic checkpoint placement algorithm to improve the checkpointing schemes’ performance in 

terms of sensitivity and flexibility. This heuristic algorithm enables automatic and transparent insertion of 
checkpoints in user’s source code. Experiments on benchmark programs and real applications demonstrate this 

algorithm’s efficiency and sufficiency. 
 

Keywords:  Job failure, application-level checkpointing, checkpoint placement algorithm. 
 

1. Introduction 
 

Checkpointing is a common technique for reducing the worst-case execution time of programs in case of faults. It 

supports fault tolerance by saving computation states to secondary storage and retrieving them later to resume 

execution after a machine fails or crashes (Gupta, Naik, & Beckman, 2011; Jiang & Chaudhary, 2004; Oliner, 
Rudolph, & Sahoo, 2006a). Therefore, checkpointing reduces total worst-case execution time of a program by 

minimizing the lost processing time (Awasthi, Misra, & Joshi, 2010; Daly, 2003). It is essential for high 

performance computing or long-running applications that mail fail. However, to support checkpointing and 

minimize overheads, one needs to determine where to insert checkpoints and how to stop and resume 
computations. A checkpoint is a location in a program where a thread/process can be checkpointed correctly. 

Since the overheads associated with constructing, saving, and retrieving computation states are not negligible 

(Greg Bronevetsky, Daniel Marques, Keshav Pingali, Radu Rugina, & McKee, 2008; Jiang, Chaudhary, & 
Walters, 2003; John Paul Walters & Chaudhary, 2009), finding appropriate checkpoints is essential.  
 

The distance between two consecutive checkpoints determines the checkpointing algorithm’s sensitivity and 
overheads. If they are too far apart, the applications might be too insensitive to job failure since the lost 

processing time could be very long. But if they are too close, the related overheads will slow down the actual 

computation (Ziv & Bruck, 1997). The trade-off between the re-processing time and checkpointing overheads 

leads to an optimal checkpoint placement. Several attempts have been made to find the optimal checkpoint 
intervals under certain computing environments and assumptions (Daly, 2003; Oliner, Rudolph, & Sahoo, 2006b; 

Young, 1974). However, most such research focused on kernel or user-level checkpointing, i.e., memory 

execution image can be treated as the computation state and dumped by certain system or library calls. With such 
assumption, checkpointing can take place anywhere anytime with invariant costs. Thus, proper checkpoint 

interval can be calculated to provide required fault tolerance functionality without incurring much state 

saving/recovering overhead. 
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However, in heterogeneous environments, checkpointing becomes much more complicated. First, there is no 

universal system call or library call to dump computation states since different operating systems and 

architectures use different formats (Manivannan, 2008). There is no sign for a possible convergence. Possibly, we 
will see an even wider diversity in the future. For portability, computation states have to be constructed at higher 

level, such as application level. Some application-level checkpointing packages such as MigThread abstract 

computation states in applications for portability (Jiang & Chaudhary, 2004). When checkpointing happens, the 
application can calculate its own state without any help from the system and kernel. MigThread can augment 

programs by inserting state construction/retrieval statements during pre-compilation. The users then need to re-

compile this augmented code. One major restriction of application-level checkpointing is that the computation 

states cannot be constructed/retrieved anywhere, anytime. Checkpointing can occur only at predefined locations 
inserted in the source code and determined at compile time. Thus, it is harder to determine the checkpoint 

interval/period (which is a runtime issue) in application-level checkpointing than kernel or user level 

checkpointing. Therefore, both timing and location issues should be considered at both compile time and runtime. 
For heterogeneous computing such as Grids, application-level approach is the only option (Babar Nazir, Kalim 

Qureshi, & Manuel, 2008; Maria Chtepen et al., 2009). 
 

In this paper, we propose a heuristic checkpoint placement algorithm for applications whose computation state 
can be constructed at the application level. Our approach is to aggressively insert a lot of potential checkpoints 

into users’ programs. Whether a potential checkpoint will be actually activated (i.e. checkpointing will be 

triggered) is decided by a scheduler (or server) which could utilize any optimal checkpoint interval estimation 
method (e.g Young’s law (Young, 1974)) to determine the actual checkpoint intervals. For example, a timer can 

be set on a server to remind applications that it is time for checkpointing. Our algorithm describes how to insert 

these potential checkpoints and tries to make programs sensitive enough. This algorithm can transparently insert 
checkpoints into the source code so that, at run time, the computation can be properly checkpointed. We make the 

following specific contributions in this paper: 
 

 Identify checkpoint placement issues in checkpointing. 

 Propose a heuristic scheme to transparently insert checkpoints. 

 Evaluate effectiveness and performance of this scheme. 
 

The remainder of this paper is organized as follows: Section 2 provides an overview of application-level 
thread/process checkpointing. Section 3 identifies the issues involved in checkpoint placement. We describe the 

details of our algorithm in Section 4. In Section 5, we give experimental results on benchmark programs and real 

applications. Section 6 is an overview of related work. We wrap up with conclusions and future work in Section 
7. 
 

2. Thread/Process Checkpointing 
 

In this section we briefly describe an application-level checkpointing scheme MigThread that is already suited for 

this work. We explain some of the reasons of this choice in Section 4. 
 

2.1 MigThread 
 

Since MigThread provides application-level migration and checkpointing functionalities for sequential and 

parallel computations in heterogeneous or Grid computing environments (Jiang & Chaudhary, 2004), it is selected 
for our heuristic algorithm design and experiments. In MigThread, both coarse-grained processes and fine-grained 

threads are supported and both migration and checkpointing are available. But in this paper we only utilize its 

checkpointing functionality. For a certain process, its threads can be simultaneously checkpointed to secondary 
storage. For process checkpointing, all internal threads as well as their shared global data are processed together. 
 

Typically, computation states consist of process data segments, stacks, heaps and register contents. In MigThread, 

the computation state is moved out from its original location (libraries or kernels) and abstracted up to the 
language level. Thus, the physical state is transformed into a logical form to achieve platform-independence. Both 

the portability and the scalability of stacks are improved. 
 

MigThread consists of two parts: a preprocessor and a run-time support module. The preprocessor is designed to 

transform user’s source code into a format from which the run-time support module can construct computation 

states precisely and efficiently.  
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A powerful preprocessor can improve the transparency of application-level checkpointing. The run-time support 

module constructs, saves, and restores computation states dynamically as well as provides other run-time safety 

checks (Jiang & Chaudhary, 2004).  
 

2.2 Data Conversion Scheme 
 
 

The major obstacle preventing application-level checkpointing from achieving widespread use is the complexity 
of adding transparent checkpointing to systems originally designed to run stand-alone. Heterogeneity further 

complicates this situation. To support heterogeneity, computation states constructed on one platform need to be 

interpreted by another. In MigThread, a data conversion scheme, called Coarse-Grain Tagged “Receiver Makes 

Right” (CGT-RMR) (Jiang, et al., 2003), is used to tackle data alignment and padding physically, convert data 
structures as a whole, and eventually generate a lighter workload compared to existing standards. It accepts ASCII 

character sets, handles byte ordering, and adopts IEEE 754 floating-point standard because of its dominance in the 

market. 
 

2.3 Checkpointing Safety 
 

Checkpointing safety concerns the correctness of the resumed computation. In other words, computation states 

should be constructed precisely, and restored correctly on similar or different machines. The major identified 

unsafe factors come from unsafe type systems (such as the one in C programming language), incompatible data 

conversion, and third-party library calls. In MigThread, a pointer inference algorithm is proposed to detect the 
hidden pointers caused by the unsafe type system. The data conversion scheme, CGT-RMR, supports aggressive 

data conversion and aborts state restoration only when “precision loss” event occurs. 
 

3. Issues Affecting Checkpoint Placement 
 

There are two important issues that affect the choice of checkpoint placement methods. First, checkpoint 

placement depends on the programming model used in the applications. For example, in some multithreaded or 
distributed computing applications with synchronization operations, checkpointing should only occur at these 

synchronization points, such as barriers in software Distributed Shared Memory systems (DSMs). Otherwise the 

data could be inconsistent. Second, since we are trying to find a general checkpoint placement scheme at the 
application-level, the underlying hardware and compilers could dramatically affect whether a heuristic method or 

a quantitative approach is chosen. We discuss these issues in the following subsections.  
 

3.1 Programming Paradigms 
 

For sequential applications, checkpoints can be inserted almost anywhere in the program. Even though we mainly 
focus on the checkpointing in sequential applications in this paper, our proposed algorithm can be extended to 

parallel programming paradigms. In parallel and distributed computing environments, the basic strategy still 

works. However, additional complexity due to consistency issues need to be handled. MigThread is a package 
that can take care of the consistency of computation states. The shared-address-space programming paradigm 

(such as multithreading) is popular because of its simplicity. However, when using this model in distributed 

systems, memory consistency models need to be applied to keep consistent data copies across multiple 

processors. Since traditional parallel applications adopt the sequential memory consistency model, the data is 
always in a consistent state. Thus, no restriction is placed on the locations where the checkpoints are inserted. In 

some advanced parallel computing environments, e.g. modern Distributed Shared Memory (DSM) systems (Roy 

& Chaudhary, 1998; Taesoon Park & Yeom, 2000; Zhou et al., 1997), relaxed memory models are used to reduce 
both the number of messages and the amount of data transferred between processors for better performance.  
 

Under such aggressive models, some virtually shared data could be in inconsistent states when they are between 

two synchronization points (barriers), i.e., their copies on physically different machines might have different 
values. If checkpointing takes place at these machines at any non-synchronization points, and inconsistent local 

copies of data are accessed (especially read) later, the resumed computation could be incorrect. To ensure 

correctness, checkpointing can be allowed only at synchronization points or barriers. To improve sensitivity, the 
preprocessor could insert light/pseudo-barriers for synchronizing the progress of all threads. When checkpointing 

is required, real barriers are invoked to synchronize both progress and data. Such light/pseudo-barriers could 

incur extra overheads in some aggressive parallel computations; however, they will improve adaptability by 
adding more possible checkpointing locations. Message passing (such as library MPI) is another commonly used 

programming paradigm.  
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In this model, if migration/checkpointing occurs between send and receive operations, the transit data may not be 

accounted and thus lead to data inconsistency. Therefore, in the current version of MigThread, 

migration/checkpointing can only be allowed at consistent points (before the send operation and after the receive 
operation). Our checkpoint placement algorithm can handle different parallel/distributed programming paradigms 

(e.g DSM, MPI), but to make our description clear and for ease of implementation, we focus on sequential 

applications in this paper. 
 

3.2 Quantitative vs. Heuristic Methods 
 

We have tried more quantitative methods that statically estimate the execution time of the user program and then 

insert checkpoints using existing optimal checkpoint interval estimation methods. In real-time or embedded 

system where the missing of a deadline will result in a catastrophic failure, a lot of work has been done regarding 

statistical estimation of the execution time (Brandolese, Fornaciari, Salice, & Sciuto, 2001; Giusto, Martin, & 
Harcourt, 2001; Malik, Martonosi, & Li, 1997). Most investigations focus on WCET (Worst Case Execution 

Time) since it is hard to know the execution path at compile time. 
 

One of the major difficulties in estimating execution time is to find loop bounds which are usually determined by 

the input of programs. For most current solutions, users are required to input these loop bounds (Li, Stewart, & 

Fuchs, 1994). This method is viable since programs in real-time or embedded systems are usually very simple and 

small. But for complex applications in scientific computing, it is impossible to ask users to input the upper bound 
for each loop. Another drawback of these methods is that the algorithms are machine-dependent. Since we are 

targeting an application-level and machine-independent checkpointing algorithm, such solutions are not 

applicable. Furthermore, caches and compiler optimizations, such as loop unrolling and software pipelining, make 
it harder to estimate the execution time of a program. Our experience shows that a quantitative approach is 

unsuitable for achieving stable results at application-level. 
 

4. Heuristic Algorithm for Checkpointing 
 

Since MigThread is implemented at application-level, we have to insert certain code into user programs in order 
to enable checkpointing functionality. The challenge is to detect proper locations in the code and treat them as 

checkpoints while maintaining an appropriate distance between two checkpoints. 
 

 
Figure 1. General mechanism for checkpoint placement 

 

Instead of selecting actual checkpoints, our solution is to aggressively insert potential checkpoints. Whether these 
checkpoints will be actually executed is determined by a scheduler (or server) which is executed in the 

background, as shown in Figure 1. That is, at compile time, the preprocessor inserts a lot of potential checkpoints. 

At run time, once the scheduler determines that a thread/process needs to be checkpointed according to any 
optimal checkpoint interval algorithm, it sends a signal to MigThread.  The signal handler will set the checkpoint 

flag (chk_flag), and the corresponding thread/process will be actually checkpointed at the next potential 

checkpoint. We will give more details in the next two subsections. Another feature of our algorithm is that the 

computation state is constructed only when checkpointing indeed happens. The preprocessor of MigThread has 
collected all related variables at the beginning of functions whereas other systems (Chanchio & Sun, 2001; 

Ramkumar & Strumpen, 1997; Ssu & Fuchs, 1998) need to report variables one-by-one at checkpoints during 

migration/checkpointing. Therefore, the cost of MigThread is much lower so that more checkpoints can be 
inserted. And this is one of the main reasons to select MigThread system for our algorithm here. 
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4.1 Potential Checkpoints 
 

The code that establishes a checkpoint is a subroutine named checkpoint(). The preprocessor of MigThread has to 

be improved so that it can insert checkpoints into user’s source code.  Detecting proper locations for checkpoints 
at compile time might not always be possible since some code relies on dynamic inputs. In many applications, 

loops consume most of the execution time in a program. If their bounds are not known statically, it is hard to 

insert checkpoints properly. For example, in Figure 2, the preprocessor may not be able to determine where the 
checkpoint() subroutine should be inserted. 
 

 
 

 

 
      

Figure 2.  Loops with unknown upper bound 
 

If the preprocessor inserts checkpoint() subroutine inside the loop, the thread/process checkpointing might occur 

during each iteration. With a simple iteration code in this example, checkpointing can take place too frequently. 

Since the overhead introduced by checkpointing activity is not negligible, frequent checkpointing will greatly 

affect the performance of user’s application. However, if the preprocessor places the checkpoint() call after the 
loop, the interval between two checkpoints could be so long as to make the system insensitive to failures. We 

solve this dilemma by inserting a potential checkpoint in each loop, whereas the scheduler determines whether a 

checkpoint needs to be actually set (Figure 1). In this way, the code block in Figure 2 can be transformed as in 
Figure 3. If no checkpointing happens, the only operation is to check a flag variable in the runtime support 

module linked with applications. 
 

 
 

 

 
 

 

 
 

 

Figure 3.  Potential checkpoints in loops with unknown upper bound 
 

Note that inserting if statements, especially in a loop, may degrade the performance of user’s program on modern 

microprocessors since it affects compiler optimizations. However, this issue is unavoidable for application-level 

solutions. And our experiments in Section 5 show that the overhead is acceptable. 
 

4.2 Potential Checkpoint Placement Rules 
 

To enable checkpointing, we modified the preprocessor of MigThread to analyze the source code and 

automatically insert appropriate potential checkpoints accordingly. Then, the transformed code will be recompiled 
and linked with MigThread run-time library. Thereafter, the program is ready for checkpointing. 
 

To insert potential checkpoints, the preprocessor has to analyze the structure and different components of user’s 
source code. Usually, programs consist of loops, common non-loop code blocks, function calls, and library calls. 

Besides, the preprocessor has to take care of some special statements such as return, exit, and so on. We will 

describe the general rules for inserting potential checkpoints in the following subsections. 
 

4.2.1 Loops 
 

Based on the analysis in Section 3, we have to specially take care of loops in user’s source code. In general, we 
apply the following rules to insert the potential checkpoints. 

 

 

 

   for (i = 0; i < upperBound; i++) { 

       sum += func(i);} 

   printf(“%d”, sum); 

   for (i = 0; i < upperBound; i++) { 

         sum += func(i); 

         if (chk_flag == 1) { 

    checkpoint(); 

         } 

    } 
   printf(“%d”, sum); 
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Figure 4. Potential checkpoints for loops 

 

Figure 4 shows our scheme for inserting potential checkpoints into loops. Here we use potential_check_point() to 

represent the code of a potential checkpoint (i.e. the if block shown in Figure 1 and 3). For loop 1, we insert one 

potential checkpoint at the last line of this loop. Loop 2 is a nested loop, thus the potential checkpoint is inserted 

inside the innermost loop. Loop 3 is in parallel with loop 2 and both of them are inside the same outer loop (the 
while loop). We also insert a potential checkpoint in loop 3. The key idea is that we insert at least one potential 

checkpoint for each loop since we might not know the loop bounds at compile time. 
 

4.2.2 Non-Loop Code and Functions 
 

We argue that the non-loop code is never too long in scientific computations. The experiments in Section 5 also 

verify this notion. Therefore, we can ignore non-loop code when we try to find the proper place for potential 

checkpoints. However, even if there is no loop in a subroutine, recursive functions and nested calls could consume 
a long period of time. So, in this case, we also need to insert potential checkpoints. 
 

In our scheme, branch instructions are also considered as non-loop code. However, since branch instructions are 

often used together with “exit” and “return” instructions which may result in different execution path, we have to 
make sure there is at least one potential checkpoint in each path. Otherwise, long intervals could exist through 

recursive calls or nested calls. 

 
 

Rules for loops: 

 One potential checkpoint is inserted right after the last statement of every loop. 

This rule guarantees the sensitivity of our system since it avoids long interval 

between two consecutive potential checkpoints. 

 In case of nested loop, potential checkpoints are inserted inside the innermost loop 

since the code in inner loop will also be executed in its outer loop. 

 Within the same outer loop, if there are multiple nested loops in parallel, one 

potential checkpoint needs to be inserted in each of them. 
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In summary, we apply the following rules to insert potential checkpoints in non-loop code and functions. 

 

 
 

 

 
 

 

 

                          
 

Figure 5 gives our scheme for dealing with non-loop code and function calls. In this segment of code, function 

subsubroutine() is called by subroutine() which, in turn, is called by another function test(). Since there is no loop 
and “return” in subroutine(), we insert one potential checkpoint at the end of this function. However, in function 

subsubroutine(), the potential checkpoint is added before the “return” instruction. In function test(), one potential 

checkpoint is inserted right before the “return” instruction inside the “if” structure because the branch instruction 

determines a different path. In addition, another potential checkpoint is inserted at the end of test() function since 
the first potential checkpoint may not be actually executed. 

 
 

Figure 5.  Potential checkpoints for sequential code and function call 
 

4.2.3 Library Call and I/O Operations 
 

Library calls can cause problems for all application-level checkpointing schemes including MigThread since all 
these schemes require access to source code. Without the source code of libraries, the preprocessor cannot insert 

potential checkpoints into the library functions. Actually, this is one of the main disadvantages of application-

level checkpointing schemes (Li, et al., 1994; Sun, Naik, & Chanchio, 1999). However, to achieve better 

portability of the application-level approach, it is reasonable to give up the sensitivity during the third-party 
library call procedures. Luckily, the execution time of most library calls is relatively short. I/O operations also 

have the potential of increasing the time between two consecutive potential checkpoints. The reason is that the 

cost of I/O operations depends on the data volume and external factors such as network bandwidth. Our 
assumption is that I/O is not a proper time for checkpointing. 
 

5. Experimental Results and Performance Analysis 
 

To evaluate our checkpoint placement mechanism, Matrix Multiplication, Molecular Dynamics (MD) simulation 

and several applications from the SPLASH-2 application suite are chosen for experiments. SPLASH-2 is selected 
because it is one of the most widely accepted benchmarks. Matrix Multiplication is small, but it is a representative 

computation-intensive application. Even though we are primarily interested in the overhead ratio and the size of 

the application does not matter; we still want to know how our scheme affects large real applications. That is why 

we chose a Molecular Dynamics (MD) application which is used to study friction forces of sliding hydroxylated 
α-aluminum oxide surfaces (Jin, Song, & Hase, 2000).In this paper, since we are concerned with the overhead 

introduced by the potential checkpoints, we did experiments with sequential applications on a single machine. We 

are also interested in the sensitivity of our checkpoint placement mechanism.  

Rules for non-loop code and functions: 

 Non-loop instructions including branch instructions will be ignored since they 

usually do not consume a lot of time. 

 For each subroutine, at least one potential checkpoint is inserted. If no loop exists, 

we insert the potential checkpoint at the end of that subroutine. 

 To ensure at least one potential checkpoint for each execution path, we insert a 

potential checkpoint before any “break” or “return” statement. 



© Centre for Promoting Ideas, USA                                                                                          www.ijastnet .com 

57 

 

5.1 Overhead of Potential Checkpoints 
 

Our first experiment is to test the overall overheads associated with our algorithm. In this experiment, the actual 

checkpointing overheads are ignored by intentionally setting all checkpointing flags (chk_flag) to 0. In this case, 

the overhead tested comprises of two parts: the first part is the time for checking the checkpointing flag at each 
potential checkpoint; the second part is the overhead introduced by inserting potential checkpoints since inserting 

statements into a loop will affect the pipeline and cache usages of the original program. 
 

Table 1 Potential checkpoints overhead in real applications 
  

 

 
 

 

 

 
 

 

Table 1 shows the overheads of six applications. We are interested in the overhead ratio R, which is defined as the 
ratio between the average overhead and the execution time of original program. In other words 

                                     R = (t1 – t0)/t0                          (1) 

where t1 and t0 represent the execution time of the application with potential checkpoints and without potential 
checkpoints, respectively. 
 

From Table 1, we can see that matrix multiplication is the only application whose overhead ratio is greater than 

2% because it is a computation-intensive application with many small loops. For about half of the applications, 

their overheads are less than 1%. Therefore, the overhead introduced by our algorithm is acceptable. Intuitively, 
real applications suitable for checkpointing usually execute for a long time, and some of them even run for several 

weeks or months. In order to test the scalability of the proposed mechanism in terms of the input size of an 

application, we randomly choose FFT and LU-c from the above six applications for experiments. For each 
application, the same experiments are performed, but with different input sizes. Their overhead ratios against 

input sizes are shown in Figure 6. 

 
 

Figure 6. Scalability of the algorithm on two applications 
 

We can see that there is no significant increase of the overhead ratio when the input size increases. Since most 
potential checkpoints are inserted inside loops in a program, the increase of the input size will cause the increase 

of loop bounds, and thus proportionally increase the overheads associated with the potential checkpoints. As a 

result, the overhead ratio will keep a relative constant value (equation [1]). Therefore, this algorithm is also 
applicable to large problems. 
 

5.2 Sensitivity Analysis 
 

We are concerned with the scheme’s response time, i.e., the time span between the scheduler’s checkpointing 

decision-making and the occurrence of actual checkpointing. The response time tr can be expressed as follows:  
      tr = ts + tp/2         (2) 
 

where ts is the startup time consumed by sending and receiving a signal and setting the checkpointing flag in the 

signal handler, and tp is the average time between two consecutive potential checkpoints.  

Program Input size 
Exec. time without 

checkpoints (us) 

Exec. time with 

checkpoints (us) 

 Overhead  

  ratio (%) 

FFT 1,024 points 3,574 3,620 1.287 

LU-c 512 x 512 2,270,464 2,293,040 0.994 

LU-n 128 x 128 40,135 40,754 1.542 

MatMult 128 x 128 146,810 149,883 2.093 

RADIX 262,144 keys 918,865 921,939 0.334 

MD 5,286 atoms 18,823,604 18,903,475 0.424 
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Although checkpointing requests can be generated by the scheduler at any time, in MigThread, actual 

checkpointing can only take place at discrete potential checkpoints. The average polling time between two 

consecutive potential checkpoints is tp/2. Thus, the response time, from the moment of checkpointing decision-
making to the moment of actual checkpointing, is ts + tp/2. Since ts is usually very small, response time tr mainly 

depends on tp. 

Table 2. Potential checkpoint distribution 
 

 

 

 
 

 

 
 

 
 

In this experiment, we try to figure out the time distribution of all the intervals between two consecutive potential 
checkpoints in a program. For each application, the number of intervals within different time ranges is recorded, 

as shown in Table 2. It is clear that more than 99.99% intervals are less than 10 us, and no one is greater than 10
4
 

us. Therefore, this experiment is consistent with our previous prediction: the non-loop code is never too long, and 
within the same outer loop, the non-loop part (other than the inner loops) is not very long. 
 

However, are the intervals ranging between 10
3
 ~ 10

4
 us acceptable or too long, even though they are very rare? 

Actually, the acceptable distance between two consecutive potential checkpoints, or the frequency of potential 
checkpoints in a program, is governed by the tolerance to the actual checkpointing cost (Sun, et al., 1999). This 

cost (in terms of time) should not exceed a certain fraction of the time spent on useful work since the last 

checkpointing. If the response time is less than or comparable to the checkpointing cost, meaning that the 
response time is much less than the time spent on useful work, it is acceptable. 
 

According to the homogeneous thread migration applications used in (Jiang & Chaudhary, 2002), for most 

applications the migration overhead is about several ms, which is comparable to the worst interval between two 
consecutive potential checkpoints as shown in Table 2. In MigThread, the implementation of checkpointing is 

similar to that of migration. The only difference is that checkpointing saves computation states into secondary 

storage instead of migrating them to another machine. Thus, we argue that the overhead of checkpointing should 

be of the similar order as the overhead of migration. We expect that the cost of process checkpointing is to be 
bigger than thread checkpointing due to larger stacks and heaps. In a heterogeneous environment, since 

MigThread has to handle the data conversion between different platforms, the cost will only increase. Based on 

the above facts, the response time, and hence the sensitivity of the proposed checkpoint placement algorithm is 
acceptable. 
 

In order to test whether the potential checkpoint distribution is scalable, same experiments on FFT, LU-c, 
MatMult and RADIX are conducted as above, but with different input sizes for each application. The 

experimental results are presented in Tables 3, 4, 5 and 6. Other applications follow the same trend. These tables 

show that the increase of input size does not generate longer intervals, and if the number of intervals within 

certain range is big enough, its increase is statistically proportional to the increase of input size (as shown in the 
left two columns or the last three rows). 
 

Table 3. Scalability of potential checkpoint distribution for FFT 

                       

 
 

 

 
 

 

 
 

Program Input size 
       Potential checkpoint intervals in certain time ranges (us) 

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105 

FFT 1,024 points 24,778 15 3 1 0 0 

LU-c 512 x 512 48,259,893 4,898 553 148 0 0 

LU-n 128 x 128 787,569 96 17 4 0 0 

MatMult 128 x 128 2,113,415 227 18 7 0 0 

RADIX 262,144 keys 2,368,721 810 30 10 0 0 

MD 5,286 atoms 137,443,856 62,050 956 418 0 0 

Input size 
    Potential checkpoints intervals in certain time ranges (us) – FFT 

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105 

210 points 24,778 15 3 1 0 0 

212 points 110,968 61 5 2 0 0 

214 points 492,161 236 12 4 0 0 

216 points 2,163,463 976 23 10 0 0 

218 points 9,436,658 3,975 83 39 0 0 

220 points 40,884,903 16,230 329 166 0 0 
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Table 4. Scalability of potential checkpoint distribution for LU-c 
 

 

 
 

 

 
 

 

Table 5. Scalability of potential checkpoint distribution for MatMult 

 

 
 

 

 
 

 

 
 

Table 6. Scalability of potential checkpoint distribution for RADIX 
 

 

 

 

 

 

 

 
 

6. Related Work 
 

Regarding how to insert checkpoints (or migration points), three methods have been proposed. The first approach 

is that checkpoints are inserted by users or initiated at a barrier (Abdel-Shafi, Speight, & Bennett, 1999). This 

method is straightforward, but it brings undue burden on inexperienced programmers who do not know the 
structure and workload of their applications. And for some large and complex applications where many 

developers are involved, it is very difficult to insert checkpoints by users. SNOW (Sun, et al., 1999) handles 

migration points by counting the number of floating point operations. That is, it inserts a migration point after a 
certain number of floating point operations. Since we do not always know the upper bound of a loop at compile 

time, this scheme has difficulties in counting the operations inside a loop. Furthermore, this scheme is not 

applicable to non-scientific applications where most operations may not be floating point operations. Our 

discussion in Section 3.2 has shown the difficulties of a quantitative method because of caches and compiler 
optimizations. Therefore, such approach might be inaccurate under many circumstances. 
 

The checkpoint placement approach in (Li, et al., 1994) is similar to ours, but it has some limitations. Their 
approach also inserts potential checkpoints inside loops, but instead of using a scheduler, it uses a counter to 

determine when checkpointing actually occurs. The counter is initially set to a value, called “reduction factor”, 

and it is reduced by one for each loop. When the counter is equal to zero, the program does actual checkpointing. 
This scheme can only insert potential checkpoints at certain sparse points, and its counter calculation causes 

larger overhead than checking a variable in our scheme. With many small loops or loops with unknown upper 

bounds, checkpointing might not take place for a long time. Therefore, this method is insensitive to failures since 

checkpointing is only allowed at sparse points. One of the major advantages of our proposed scheme is that it is 
generic for both thread/process checkpointing. Since it can tolerate more checkpoints, the applications can be 

more sensitive to their dynamic situations. On the contrary, other schemes only allow checkpointing at very 

sparse points. Furthermore, our scheme has the potential to work with more complex schedulers, which could be 
very important for meta-computing or Grid computing (Cicerre, Madeira, & Buzato:, 2006; Zhu, Xiao, Xu, & Ni, 

2006). Grids are typical heterogeneous computing environments. Portability is a critical issue.  

Input size 
           Potential checkpoints intervals in certain time ranges (us) – LU-c 

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105 

64 x 64 104,053 21 3 1 0 0 

128 x 128 787,695 106 11 4 0 0 

256 x 256 6,122,137 821 37 25 0 0 

512 x 512  48,259,893 4,898 287 148 0 0 

1024 x 1024 383,206,760 37,725 27,08 1,417 0 0 

Input size 
    Potential checkpoints intervals in certain time ranges (us) – MatMult 

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105 

32 x 32 33,818 6 2 1 0 0 

64 x 64 266,252 45 7 3 0 0 

128 x 128 2,113,415 227 18 7 0 0 

256 x 256 16,841,117 1,719 109 66 0 0 

512 x 512 134,465,435 13,473 952 527 0 0 

Input size 
    Potential checkpoints intervals in certain time ranges (us) – RADIX 

< 10 10 ~ 102 102 ~ 103 103 ~ 104 104 ~ 105 > 105 

4,096 keys 47,112 17 2 1 0 0 

16,384 keys 157,666 54 4 2 0 0 

65,526 keys 599,883 200 10 4 0 0 

262,144 keys   2,368,721 810 30 10 0 0 

1,048,576 keys 9,444,073 3,245 94 49 0 0 
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Thus, application-level checkpointing is the only option since on different platforms computation states will be 

represented differently. Common kernel-level and user-level approaches are only applicable on homogeneous 
clusters. Our target is application-level approach which will be adopted by Grids because of its heterogeneity 

nature. 
 

7. Conclusions and Future Work 
 

We have proposed a heuristic checkpoint placement algorithm which can be incorporated into application-level 

checkpointing packages, such as MigThread. According to our experiments on SPLASH-2 benchmark programs 

and the Molecule Dynamics simulation application, our algorithm inserts sufficient potential checkpoints for high 
sensitivity.  However, some programmers might apply unstructured programming styles which cause sparse 

potential checkpoints. For such applications, users can always insert potential checkpoints manually. At each 

potential checkpoint, the scheduler will decide whether an actual checkpointing should occur or not according to 
system workload, application requirements, and optimal checkpoint interval algorithms. Contrary to the 

approaches adopted in many other research projects, our algorithm is more flexible, realistic, adaptive and 

sensitive to system requirements. We have demonstrated the efficacy of our algorithm using several benchmarks 

and real applications. We are currently investigating a more elaborate scheduler to make a choice of data, thread 
or process migration/checkpointing for better data locality and communication minimization. Such scheduling 

processes will further indicate if the potential checkpoints inserted by this algorithm are sufficient. This algorithm 

helps improve applications’ adaptability and sensitivity in heterogeneous distributed computing environments.  
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