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Abstract 
 

Considered herein is the behavior of solutions for a two component b  family shallow water system. The 
persistence properties, unique continuation and infinite propagation speed for the solutions of the b family system 
are examined in this work.  
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1. Introduction 
 

This paper is concerned with the evolution of certain solutions to a recently derived two-component  
b family system, which is given by  
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                (1.1)                     

where .xxm u u   
 

System (1.1) was recently introduced by Guha in [16], this two-component system is defined on a  infinite-
dimensional Lie group, which is the group of orientation-preserving diffeomorphisms of the circle [30], for more 
geometric interpretations of system (1.1), see [16, 30] for details.  
 

System (1.1) is a generalization, since it reduces to the following celebrated b  family equation upon setting  = 0:  
,( 1)t txx x x xx xxxu u b uu bu u uu                                 (1.2) 

 

where b  is a constant parameter.  Eq.(1.2) can be derived and shown to belong to an asymptotically equivalent 
family of equations by using Kodamas normal form transformations [25, 26] of the equations that emerge from 
shallow water asymptotics. In [8, 9], the authors have given a clear explanation of how the CH equation arises 
from asymptotic expansions for shallow water motion. However, the parameter b may take any value except 1 , 
for which the asymptotic ordering forshallow water is broken. Incidentally the Camassa-Holm equation was 
recently rederived as a shallow water equation by using asymptotic methods in three diferent approaches by Fokas 
and Liu in [13],  by Dullin et al. in [8, 9] and also by Johnson in [23].  These three derivations used different 
variants of the method of asymptotic expansions for shallow water waves in the absence of surface tension.  
 

For 2b  , Eq.(1.2) becomes the Camassa-Holm equation, modelling the unidirectional propagation of shallow 
water waves over a flat bottom.  It is also a model for the propagation of axially symmetric waves in hyperelastic 
rods [6, 7]. The Cauchy problem of the Camassa-Holm equation has been intensively studied in recent years [3, 4, 
5, 27, 31, 35].  On the other hand, persistence properties and unique continuation of solutions to the Camassa-
Holm equation has also been derived [21].  
 

For 3b  , Eq.(1.2) becomes the Degasperis-Procesi equation, it can be regarded as a model for nonlinear shallow 
water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm  equation [8, 9].  
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A considerable amount of work has been devoted to the study of the corresponding Cauchy problem in both 
nonperiodic and periodic case, see [11, 28, 32, 33]. Besides, the persistence properties and infinite propagation 
speed of solution have been investigated in [19] and [20] respectively.  
 

For 0  , if we take 1 2k  and 3 1k  , Eq.(1.1) becomes the following two-component system:  

2
+ +2 + 0, 0, ,
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t x x

m um u m k t x R

u u t x R
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where xxm u u  , 2 1k    was derived by Constantin and Ivanov in the context of shallow water theory.  It has a 
Lax pair and it is bi-Hamiltonian [2].  The mathematical properties of the two-component Camassa-Holm 
equation have been studied intensively [1, 2, 10, 12, 15, 17, 22, 34]. Among these results, of relevance to the 
present paper will be the fact that the solutions of the system persist the decaying properties during evolution and 
have infinite propagation speed.  
 

The aim of this article is to look at how certain solutions of the system (1.1) develop over the duration  of their 
time of existence. First, we will show that the strong solutions of the two-component b family system,  initially 
decaying exponentially together with its spatial derivative, must be identically equal to zero if they also decay 
exponentially at a later time. Afterwards, we will examine whether the solutions of system (1.1), initially compact 
supported, will continue to do so as they evolve. We will see that some solutions with remain compactly 
supported at all future times of their existence, while other solutions display an infinite speed of propagation and 
instantly lose their compact support. 

 

2. Preliminaries 
 

In this section, we shall address the local well-posedness result of system (1.1). We first introduce some notations.  
In the following, we denote by  the spatial convolution. Given a Lebesgue space ( )pL R , we denote its norm by 

p
 . Because all spaces of functions are over R , for simplicity, we drop R  in our notations of function spaces if 

there is no ambiguity.  In contrast, if there is no particular emphasis, all spatial variable of functions is x , for 
simplicity, we drop x  in our notations of functions if there is no ambiguity. If 

1
( )

2
xp x e
 

then 2 1
(1 ) *x f p f
    for all 2 ( )f L R  and so *p m u . Applying the convolution operator to the first equation of 

system (1.1),  we can rewrite system (1.1) in the following equivalent form  
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                  (2.1) 

The system (2.1) is the correct form to apply Kato’s semigroup theory [24] to show local well-posedness, for 
details, we refer to [29].  The following result then follows 
 

Theorem 1  Given 1

0 0 0
( , ) ( ) ( )T s sX u H H   R R ,  there exists a maximal existence time 10( )s sH H

T T X 
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   s 1 1 1 2
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Moreover, the solution depends continuously on the initial data, i.e. the mapping  
    1 1 1 1 2

0 0( , ) : ( ) ( ) 0, ; ( ) ( ) ( 0, ; ( ) ( ))s s s s s sX X X H H C T H H C T H H        R R R R R RI  
is continuous. 
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3. Persistence properties and unique continuation 
 

In this section, we shall investigate the following persistence properties for the strong solution of system (1.1) in 
L space with exponential weights.  

 

Theorem 2  Assume that 1

0 ( ) ( )s sX H H  R R  with 5 / 2s   satisfies that for some  0, 1   

0 ( ) ,X x  0 ( ) ~ ,x

xX x O e   as x   , 
 then the corresponding strong solution to system (1.1) satisfies  

( , ) ,X t x   ( , ) ~ ( )x

xX t x O e   
uniformly in the time interval [0,T]. 
 

Proof  For simplicity, we introduce the following notations: 
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
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Multiplying the first equation in (2.1) by 2 1 ( )pu p Z  and integrating the result in the x -variable over R , we 
obtain  
       2 1 2 1 2 1 ( , ) 0.p p p
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In view of the equality 
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it can be deduced from (3.1) that  
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Multiplying the second equation in (2.1) by 2 1 ( )p p Z   , we can see 
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It follows from the following estimates  
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and Holder's inequality in (3.3) that  
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The Gronwall's inequality and Sobolev embedding theorem enable us to derive 
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Next, differentiating the first equation of system (2.1) with respect to x  yields 
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In a similar manner, we can derive for the second equation of (2.1) that  
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therefore, solving the above diferential inequality, and then taking the limit we get 
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where N Z   and we have 0 ) ( )N Nx x  （ . Multiplying the first equation of (2.1) and (3.4)  
by ( )N x , one can derive  
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Therefore, similar as the weightless case, we get 
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Multiplying the second equation of (2.1) and its diferential form with respect to by N , we have  

3( ) ( ) 0,N t x N x Nk u u                          (3.8)         

3 3( ) ( +1) ( ) 0.t t N xx N x x N xx Nu k u k u                           (3.9) 

Multiplying (3.8) and (3.9) with  2 1p

N
 and  2 1p

x N 
 respectively, an integration by parts yields for (3.8) 

2 12 1

2 2
( ) ( ) ,pp

N N t N Np p

d
dx

dt
    R

 

 2 1 2 1( ) ( ) ( )p p

x N N N x N Nu dx u dx          R R
 

2 2 11
= ( ) ( )

2
p p

x N N Nu dx u dx
p

     R R

2 2 11
( ) ( ) .

2
p p

x N N Nu dx u dx
p

      R R
 

The estimates for (3.9) can be derived in a similar manner.  Thus we can obtain  
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By taking N   in the above estimate, we can see  
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sup ( + )x x x x

x x
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  ( , ) ,u t x   ( , ) ,xu t x   ( , ) ,t x    ( , ) ~ ,x

x t x O e    as x    
uniformly in the time interval [0, )T , Theorem 2 is so proved.  

Analogous to the proof of Theorem 2, we can conclude the following  
 

Corollary  1 Assume that  1

0 ( ) ( )s sX H H  R R with 5 / 2s   satisfies that for some  0, 1   

0 ( ) ,u x   0 ( ) ,xu x   0 ( ) ( ),xx O e  :  
then the corresponding strong solution to system (1.1) satisfies 

( , ) ,u t x   ( , ) ,xu t x   ( , ) ( ).xt x O e  :  
Uniformly on the time interval [0, )T . 
 
The following theorem which concerns on the unique continuation property is based on the above persistence 
property, it is to formulate decay conditions on a solution, at two distinct times, in two distinct cases, which  
guarantee  that (0, 0)TX   and (0, )TX   is  the  unique  solution  of  the following two cases respectively.  

Theorem 3 Assume that 1
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as x   . Then 00, ( , ) ( )u t x x   . 
Proof  (1)  Integrating the first equation of (2.1) with respect to time t  over  10, t  yields 

1 1 2 2 21 1 2
1 0 0

3
( , ( , 0) ( , ) ( ) .

2 2 2

t t

x x x

k k k
u x t u x uu x d p u u d   


        ）               (3.11) 

In view of the assumption of the theorem, we can derive  

1( , ) ( , 0)~ ( ),xu x t u x o e  as x   . 

It follows from Corollary 1 that 1 2

0
( , ) ~ ( )

t x

xuu x t dx O e  , Therefore, 1

0
( , ) ~ ( ).

t x

xuu x t dx o e  
For the right hand side of (3.11), we have 

1 12 2 2 2 2 21 1 2 1 1 2

0 0

3 3
( ) ( )

2 2 2 2 2 2

t t

x x x x

k k k k k k
p u u dt p u u d  

 
          ( ).: x p Q x    

Since 2 0k  , it follows from Corollary 1 again 20 ( )~ ( )xQ x O e  , thus we have ( )~o( ) xQ x e  
as x   . In consequence 

1
( ) sgn ( ) ( )

2
x y

x R
p Q x x y e Q y dy      =

1 1
( ) ( ) ,

2 2

xx y x y

x
e e Q y dy e e Q y dy

 


    

while 2( ) (1) (1) ~ ( ).x y x y x x

x x
e e Q y dy o e e dy o e o e

        

 If 0Q  , then there exists 0 0C  , such that for 1x ? , 0-
( )

x ye Q y dy C


 . Therefore, we have for 1x ?  that 

0( )
2

x

x

C
p Q x e   , from  which  we  obtain  a  contradiction, thus ( ) 0Q x  , which implies 0, 0u   . 
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(2) For 2 0k  , using the discussion above we can obtain 0u  , substituting into the second equation of (2.1) we 
can deduce 0t  , it is easy to observe by now that 0( , ) ( )t x x  . 
Analogous to Theorem 3, we can derive the following 

Theorem 4  Assume that 1

0 ( ) ( )s sX H H  R R  with 2s  , if for some 
1

( ,1)
2

    

0 ( ) ~ ( ),xu x O e   0 ( ) ~ ( ),x

xu x O e    0 ( ) ( ),xx O e  :  as x   , 

then ( , ) ~ ( ), ( , )~ ( )x xu t x O e t x O e   uniformly in time interval [0, ]T . 
 

4. Infinite  propagation  speed 
 

Recently, Guo and Ni [18] proved the infinite propagation speed for a two component generalized Camassa-Holm 
equation by establishing a detailed description on the profile of the corresponding solution with compactly 
supported initial datum.  But how about the generalized two component family system?   Do this kind of system 
have the same infinite propagation speed as the two component Camassa-Holm equation, the answer is positive.  
In the following we make use of the family    0, 

( )
T

q





，  of difeomorphism defined by  

( , )= ( , ( , ))  ,

( , 0)= .
tq t x u t q t x

q x x





                             (4.1) 

For the Camassa-Holm equation, these diffeomorphisms have a geometric interpretation, however,  there is no 
such interpretation for this two component b family system yet.  By solving (4.1), one  easily obtains  

                          0
( , ( , )

( , ) ,
t

xu s q s x ds

xq t x e                                     (4.2) 
which tells us these diffeomorphisms ( , )q t  are increasing for each [0, )t T .  
 

The following Lemma tells us that the solution ( , )t x  shares the same sign with its initial value as it evolves, 
moreover, if 0 ( )x  is compactly supported, so do the solution ( , )t x . 
 

Lemma 1  Assume that 1

0 ( ) ( )s sX H H  R R  with 2s  , T  is the maximal existence time of solution to system 

( , )TX u  , then for all ( , ) [0, )t x T  ¡ ,  
                3

0( , ) ( , ) ( ).k

xt q q t x x                                       (4.3) 
Proof of Lemma 1 Differentiating (4.2) with respect totime variable, in view of the second equation of  
(2.1), we have  

 3 3 3 1

3( , ) ( , ) ( ( , ) ( , ) ( , )) ( , ) ( , ) , ) ( , )k k k

x t x t x x tx

d
t q q t x t q t q q t x q t x k t q q t x q t x

dt
       （              

  3

3= ( , ) ( , ) ( , ) ( , ) ( , ) ( , )k

t x t x xt q t q q t x k t q u t q q t x     
0.  

Lemma  2 Assume that 0u  is such that 0 0 0, xxm u u   has compact support, contained in the interval 0 0[ , ]a b , and 

0 is also compactly supported with its support contained in 1 1[ , ]a b . If 0T   is the maximal existence time of the 
unique classical solution ( , )X u   to system (1.1) with the given initial data 0 0 0( , )X u  , then for any [0, )t T  
the solution ( , )m t x  has compact support. 
 

Proof  It follows from the first equation of (1.1) and the diffeomorphism (4.1) that 

  1 1 1 1

1( , ( , ) ( , ) ( ) ( , ) ( , )k k k

x t x t x x tx

d
m t q t x q t x m m q q t x k mq q t x

dt
      

                    1 1

1( ) k k

t x t x x xm m q q k mu q   1

2 ,k

x xk q   
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therefore, 

1 1

1 0 20
( , ( , )) ( ) ( ( , ),  ) ( ( , ),  ) ( , ) .

tk k

x x xm t q t x q m x k q s x s q s x s q s x ds                         (4.4) 
 
Note that (4.3) and the assumption of the lemma guarantee ( , )t x  has compact support in  1 1( , ), ( , )q a t q b t , and 
the integral part of (4.4) is also compactly supported in 1 1[ , ]a b .  Thus, if we  
 

Take 0 1 0 1max min{ , }, { , }a a a b b b  , we can see ( , )m t   is compactly supported in 1 1[ , ]a b  .  
 

If we suppose has compact support, then clearly 0m is also compactly supported, and by Lemma 2 the function m  
will then have compact support for all [0, )t T .  But this property is not valid for the solution component u , 
actually, in the following we shall prove that the only solution of (1.1) which retains the property of having 
compact support for any further time is the trivial solution 0u  . The solution u  has an infinite propagation speed 
in the sense that it instantly loses its compact support.  
 

First, we introduce a lemma 
 

Lemma  3 [14] Let  2 2( ) ( )u C H R RI  be  such that xxm u u   has compact support. Then u  has compact 
support if and only if  

( ) ( ) 0.x xe m x dx e m x dx  R R
                                       (4.5) 

 

Theorem  5 Assume that the initial data 0u  has compact support,  0T   be the maximal existence time of the 

unique solution ( , )u t x  with initial data 0u , 10 3k  , 2 0k  . If at every point  0, t T  the 2C  function 
( , )u t x has compact support, then 0u   . 

 

Proof Differentiating the first integral of (4.5) with respect to t  with the first equation in (1.1) applied, we get 

( , )x x

t

d
e m t x dx e m dx

dt
 R R

 

         = 1 2

x x x

x x xk e mu dx e m udx k e dx    R R R
 

         22
1 2

x x x x

x x

k
k e mu dx e mu dx e mudx e dx       R R R R

 

         22
1(1 )

2
x x x

x

k
k e mu dx e mudx e dx     R R R

 

         2

1 1(1 ) (1 )x x x x

x xx x xxk e uu dx k e u u dx e u dx e u udx        R R R R

22

2
xk

e dx R
 

         2 2 21 1 23
,

2 2 2
x x x

x

k k k
e u dx e u dx e dx


    R R R

 

Therefore, we can derive 

    2 2 21 1 23-
( , ) ( ) .

2 2 2
x x

x

k k kd
e m t x dx e u u dx

dt
   R R

                          (4.6) 
 

It follows from the assumption of the theorem and Lemma 4.3 that u(t,x) is compactly supported, Thus 0.u    
 

The important work in this section is to give a more detailed description on the corresponding strong  solution 
( , )X t x  in its life span with 0X being compactly supported. The main theorem reads  
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Theorem  6  Assume that for some 0T   and 2s  ,   s 1( 0, ; ( ) ( ))sX C T H H  R R  is the unique strong solution 

of system (1.1), 10 3,k   2 0k  . If the initial data 0 ( ) (0, )u x u x is compactly supported in  0 0,    and the 
initial data 0 ( ) (0, )u x u x  is compactly supported in  1 1,  , then we have for any  0,t T , 

+ ( ) , > ( , ),
( ,  )

( ) , < ( , ).

x

x

E t e x q t
u t x

E t e x q t














                                            (4.7) 

Where  0 1max ,     ,  0 1min ,     , ( )t


, ( )t


 are continuous functions satisfying + (0)= (0)=0 


for all 

 0,t T ,  with ( )t


 being a strictly increasing function, while ( )t


 being strictly decreasing. 
Proof   By using the relation *u p m  we can decompose u  as following 

-1 1
( ) ( ) ( ) .

2 2

xx y x y

x
u x e e m y dy e e m y dy




    

We define functions  
( , )

( , )
( ( , ) ,

q t y

q t
t e m t y dy







 ）   

( , )

( , )
( ( , ) ,

q t y

q t
t e m t y dy




 


 ）  

Therefore we have 

                
1

( , ) ( ),
2

xu t x e t


     ( , ).x q t  

1
( , ) ( ),

2
xu t x e t


       ( , ).x q t  

Differentiating the above two equalities with respect to x  yields  
1

( ) ( , ) ( , ) ( , ),
2

x

x xxe t u t x u t x u t x


      ( , ),x q t  

1
( ) ( , ) ( , ) ( , ),

2
x

x xxe t u t x u t x u t x


       ( , ).x q t  

Since (0, )u   is compactly supported in ,   , we can deduce + (0)= (0)=0 


. 
For each fixed t , since ( , )m t   is compactly supported in  ( , ), ( , )q t q t   , we can derive  

( )

( , )

( )
( ,  ) ( ,  ) .

q t y y

t tq t

d t
e m t y dy e m t y dy

dt





 



  

，

 

In view of (4.6), we have 
2 2 21 1 2( ) 3

( ) ,
2 2 2

y

x

d t k k k
e u u dy

dt










       0, .t T  

From which we can obtain 
( )

0,
d t

dt


    0, .t T  

A similar calculation yields  
( , )

( , )

( )
( , ) ( , ) .

q t y y

t tq t

d t
e m t y dy e m t y dy

dt





  


    

Integrating by parts enable us to derive  
2 2 21 1 2( ) 3

( , ) ( ) ,
2 2 2

y y

t x

d t k k k
e m t y dy e u u dy

dt




  

 


        0, .t T  

It is easy to observe from above that 
( )

0,
d t

dt


   0, .t T  
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Therefore, in the lifespan of the solution, we have that ( )t


 is an increasing function with + (0)=0 , thus it 

follows that for  0, ,t T  ( )t


  can be expressed as   

                         2 2 21 1 2

0

3
( ) ( ) 0.

2 2 2

t x

xR

k k k
t e u u dxd  




      

And similarly, ( )t


 can be expressed as 

2 2 21 1 2

0

3
( ) ( ) 0.

2 2 2

t x

xR

k k k
t e u u dxd  




       

In order to finish the proof, it is sufficient to let 
1

( ) ( )
2

E t t
 

  and 
1

( ) ( )
2

E t t
 

  respectively. 
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