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Abstract 
 

Several global remote sensing normalized difference vegetation index (NDVI) datasets have been established for 

vegetation monitoring and climate change study, including the MODIS NDVI product, the GIMMS and so on. 

Many researches focused on estimating forest gross primary productivity (GPP) by MODIS data, which is only 

available from 2000. However, the GIMMS dataset has a long record period from 1981 to 2006, and will be 

continued to most recent year (GIMMS3g). That is very suitable for long time period GPP monitoring. 

Nonetheless, there is a lack of comparison between those two different NDVI datasets for forest GPP estimation. 

As an attempt to deal with that problem, MOD13A1 from MODIS and GIMMS from AVHRR were used in this 

study to test the potential of NDVI for forest GPP estimation over continental U.S. from the greenness and 

radiation (GR) model. Meanwhile, three different predictors: NDVI, NDVI*NDVI and NDVI*NDVI*PAR were 

chosen to accompany with linear, quadratic and exponent functions for GPP estimation at 15 Ameriflux sites. 

Results showed that both MODIS and AVHRR NDVI datasets have the ability to predict GPP. However, the 

MODIS data outperforms AVHRR data. Meanwhile, the predictor of NDVI*NDVI*PAR has better explanatory 

power than others. As for three statistical models, no one is obvious better than others. 
 

Keywords: GPP; NDVI; MODIS; AVHRR; GIMMS; Ameriflux 
 

1. Introduction 
 

Gross Primary Productivity (GPP), defined as the amount of carbon fixed by vegetation through photosynthesis, is 

a key component of ecosystem carbon fluxes and the carbon balance between the biosphere and the atmosphere 

(MÄKELÄ et al., 2008).  
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Quantification of the magnitude of  (C) uptake, and how it varies inter-annually, is an important question with 

future potential sequestration influenced by both increased atmospheric CO2 and changing climate (Nemani et al., 

2003). Therefore, the accurate estimation of GPP is essential for the quantification of net terrestrial carbon, which 

is often a small difference of two large carbon fluxes: 
 

GPP and ecosystem respiration (Re) (X. Xiao et al., 2004). Estimation of GPP for terrestrial ecosystems at region, 

continent, or the globe level can improve our understanding of the feed-backs between the terrestrial biosphere 

and the atmosphere in the context of global change and facilitate climate policy-making (J. Xiao et al., 2008). 

However, this can only be fulfilled by using ecosystem models (Prince & Goward, 1995) or remotely sensed 

approaches (Running, Thornton, Nemani, & Glassy, 2000). A number of remote sensing based productivity 

estimation models have been proposed. Early approaches include the Carnegie Ames Stanford Approach 

Biosphere model (CASA) (Potter et al., 2003), the Global Production Efficiency Model (GLO-PEM) (Ruimy, 

Kergoat, & Bondeau, 1999) and the Bio-Geochemical Cycles model (BGC) (Running & Gower, 1991), which 

require relatively more parameters as the model inputs. The simplified BGC model has been used for Moderate 

Resolution Imaging Spectroradiometer (MODIS) product termed MOD17 generation (M. Zhao, Running, & 

Nemani, 2006), and it still requires considerable inputs from meteorological measurements and lookup tables 

based on vegetation types. These can introduce errors into GPP estimation, either in the original estimate of LUE 

for a particular vegetation type or in the assignment of vegetation type to one pixel, since these input data are not 

often available at the same spatial or temporal scale as the remote sensing imagery . 
 

Recent studies focus on the light use efficiency (LUE) model, which is supposed to have the highest potential for 

adequately addressing the spatial and temporal GPP dynamics. It proposes a direct proportional relation between 

biological production and the amount of photosynthetically active radiation (PAR) absorbed by the vegetation 

canopy (APAR) (Sims et al., 2008).The fundamental methodology of GPP estimation is based on former research 

(Monteith, 1972; Monteith & Moss, 1977) as: 
 

 
 

where fAPAR represents the fraction of absorbed PAR. The multiplication of fAPAR and PAR equals to APAR. 

The Vegetation Photosynthesis Model (VPM) (Monteith & Moss, 1977; X. Xiao et al., 2004) and the 

Physiological Principles for Predicting Growth (3-PG) model (Coops, Waring, & Law, 2005) and the EC-LUE 

model (W. Yuan et al., 2010; W. P. Yuan et al., 2007) also use the basic idea of equation 1. Though models 

driven by a large number of input parameters can give good estimates of GPP, the demand of these variables at 

required temporal and spatial resolutions is often a bottleneck for the global applications of these models (C. Wu, 

Niu, & Gao, 2010). 
 

Simple algorithms are needed for GPP estimation at decent spatial scale for long time period in order to monitor 

the ecosystem carbon dynamic. Based on LUE model, that demands proper indicators for LUE and fAPAR. 

Vegetation indices (VIs) derived from one or more bands of reflectance offer important and convenient 

measurements for the estimation of ecosystem biophysical (e.g. Leaf area Index (LAI)) and biochemical 

parameters (e.g. chlorophyll content) , since these parameters are the proxy for LUE and fAPAR. These results 

provided the potential for estimating GPP from the combination of such VIs and climate variables . Therefore, 

VIs are frequently used in GPP estimation models. Commonly used VIs include Normalized Difference 

Vegetation Index (NDVI) (Myneni, Hall, Sellers, & Marshak, 1995), Enhanced Vegetation Index (EVI) 

(Salomonson, Barnes, Xiong, Kempler, & Masuoka, 2002), (Anatoly A Gitelson, Viña, Masek, Verma, & Suyker, 

2008), wide dynamic range Vegetation Index (WDRVI) (Anatoly A Gitelson et al., 2008) and so on. Among these 

VIs, NDVI has the widest usage and relatively long history (Holben, 1986), nevertheless is has some limitation 

for different situations (Jiang, Huete, Didan, & Miura, 2008). 
 

The greenness radiation (GR) model proposed by Wu et al. suggests that GPP can be predicted by the 

combination of EVI and PAR (C. Wu, Chen, & Huang, 2011; C. Wu, Niu, et al., 2010; C. Wu et al., 2009). This 

model has been applied for various ecosystems types using MODIS EVI data (C. Wu, Gonsamo, Zhang, & Chen, 

2014). Most researches focus on the MODIS dataset for GPP prediction, only covering the time period from 1999. 

While the Global Inventory Modeling and Mapping Studies (GIMMS) dataset from Advanced Very High 

Resolution Radiometer (AVHRR) has a long-term record for NDVI from 1981 (Julien & Sobrino, 2009), which 

has been improved and extended as GIMMS3g to recent years (Fensholt & Proud, 2012).  
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That can provide us a long term knowledge for GPP estimation. Therefore, in this paper, we investigated the 

potential of NDVI from MODIS and GIMMS for forest GPP estimation over continental U.S. based on the theory 

of GR model. 
 

2. Data and Methods 
 

The overall approach of this paper was to test if the theory of GR model can be transplanted for the NDVI 

datasets from MODIS and GIMMS. In the following parts, we describe: (1) the selection of study sites and 

processing of Ameriflux data, (2) the selection and processing of NDVI data from MODIS and AVHRR, (3) our 

analytical approach. 
 

Figure 1: Map of Selected Ameriflux Forest Sites in this Study 
 

 
 

2.1. Study Sites and Ameriflux Data 
 

Fifteen forest sites were selected in this study, including 6 deciduous broadleaf forest sites, 6 evergreen needleleaf 

forest sites and 3 mixed forest sites from Ameriflux (http://ameriflux.ornl.gov/). These sites (Figure 1) represent a 

wide diversity of natural forest vegetation across the U.S., with considerable variation in regions, climate and 

species composition. Scaling from the ground measurements at the site to the remote sensing satellite image pixel 

is not trivial because the heterogeneity of the flux tower footprint can lead to a time-variant measurement bias 

(Hashimoto et al., 2012). We selected sites with no fierce land cover change according to the additional 

information provides by their principle investigators to avoid scaling issues and ensure selected sites with land 

cover extended homogeneously over a nearly 300 m radius circle around the flux tower. The specific information 

for those 15 sites is listed as Table 1. 
 

Eddy flux measurements of CO2, H2O and energy were made as core measurements at those sites. However the 

data collection and duration period are not uniform (Table 1 and Figure 2). Only Level 4 Ameriflux data were 

used in the study, including meteorological, eddy covariance flux data and estimated GPP. The GPP was derived 

from estimated Net Ecosystem Exchange (NEE). The partitioning of the measured NEE fluxes into GPP and Total 

Ecosystem Respiration (TER) was based on a temperature-dependent exponential model of TER, using nighttime 

NEE data . GPP was finally obtained as the sum of NEE and TER according to Reichstein et al. (Reichstein et al., 

2005). Both NEE and GPP were filled using the Marginal Distribution Sampling (MDS) method and the Artificial 

Neural Network (ANN) method (Papale & Valentini, 2003; Reichstein et al., 2005). And the time-series were 

finally gap-filled at the daily, weekly, and monthly time scale. Due to the reliability issue of MDS method and 

ANN methods, we used the results from MDS method filled data. Since the former methods handled original 

storage of data, which is more reliable, while the latter method was used for long time period data gap(Sims et al., 

2008). 
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Daily data of air temperature, soil temperature, precipitation, net incident shortwave radiation (SWR), vapor 

pressure deficit (VPD) are provided by researchers at these 15 sites. The SWR are converted to PAR by Equation 

2 (Running, Nemani, Glassy, & Thornton, 1999): 
 

 
2.2. MODIS NDVI dataset (MOD13A1) 
 

MODIS NDVI dataset is synthesized on a 16 day basis from the end of 1999, since when the satellite of TERRA 

was launched (Gallo, Ji, Reed, Dwyer, & Eidenshink, 2004). It carried the MODIS sensor, and followed by 

another identical MODIS sensor, carried by the satellite of AQUA, launched in 2002. This NDVI dataset is 

derived from bands 1 and 2 of MODIS, centered at 645nm, and 858nm (Table 2), as the original definition of 

NDVI in Equation 3: 
 

 
 

Table 1: Information for Selected Ameriflux Forest Sites 
 

 
 

Table 1: Information for Selected Ameriflux Forest Sites, Continued 
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Where rnir represents the reflectance of near infrared band and rred represents the visible red band. The Terra 

MODIS Vegetation Index products, MOD13A1 (A Huete et al., 2002) were acquired for each selected site from 

the Oak Ridge National Laboratory's Distributed Active Archive Center (DAAC) website 

(http://www.modis.ornl.gov/modis/index.cfm). MOD13A1 data are provided every 16 days at 500 meters spatial 

resolution as a grid level-3 product in the sinusoidal projection, with radiometric and geometric correction, along 

with bidirectional effect adjustment and other calibrations (Alfredo Huete, Justice, & Van Leeuwen, 1999). This 

product was then used to extract NDVI. Cloud contaminated and high aerosol pixels are rejected by selecting the 

quality flag, which ensures the good quality of NDVI. NDVI was extracted from 5×5 MODIS pixels (2.5 km×2.5 

km) that centered on the flux tower, as for the problem of uncertainty in determination which pixel the footprint 

falls in. All the NDVI pixel values in this 5*5 range with good quality were averaged to one value, and 

represented the NDVI for the site point. 
 

2.3. AVHRR NDVI dataset (GIMMS) 
 

The GIMMS (Global Inventory Modeling and Mapping Studies) data set is a NDVI product available for a 25 

year period spanning from 1981 to 2006, and open to the public by Global Land Cover Facility, University of 

Maryland (http://glcf.umd.edu/data/gimms/index.shtml). The dataset is derived from imagery obtained from the 

Advanced Very High Resolution Radiometer (AVHRR) instrument on board of the NOAA satellite series 7, 9, 

11, 14, 16 and 17 (Table 2). This is an NDVI dataset that has been corrected for calibration, viewing geometry, 

volcanic aerosols, and other effects not related to vegetation change (Tucker et al., 2005). The GIMMS collection 

is available here in two projections: Albers projection with each continent a separate file, or global files in 

Geographic coordinates. It has a 8 kilometers spatial resolution with half month time interval, which provides 24 

scenes for one year. Same with the MODIS NDVI data set, we only chose the pixel with good quality (with 

quality flag=0). Only the pixel with the flux tower coordinate was used to extract the NDVI value. 
 

Table 2: Comparison between MODIS and AVHRR NDVI Data Sets 
 

 
 

2.3. Preprocessing of Ameriflux Data and NDVI data 
 

Since the data period for Ameriflux forest sites we selected are not uniform (Table 1), so as the MODIS 

(MOD13A1) and AVHRR (GIMMS) NDVI data set (Table 2), only the ground data with 
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Table 3: Timetable for MODIS (MOD13A1) and AVHRR (GIMMS) NDVI 163 Data and Sites’ 

Measurement. The Grey Boxes Indicate Years of Data Used in this Study 
 

 
 

Corresponded remote sensing data were chosen in the study (Table 3). The original data, using the good quality 

filtering described as above, still have noise and missing point. Thus we applied Savitzky–Golay (SG) filter (Chen 

et al., 2004; Savitzky & Golay, 1964) to them to get continuous data curves. The SG filter is a moving window 

least square fitting. In this paper, the window size was 5 and the order of the fitting function was 3. This 

processing was conducted in Matlab R2013a software (MathWorks Inc.) using TIMESAT package (Jönsson & 

Eklundh, 2004). 
 

As the MOD13A1 product has 16 days time interval, which gets 23 scenes on year, while the GIMMS product is 

half month synthesized and 24 scenes for one year (Table 2). For each selected site, we resampled the GIMMS 

NDVI data into 16 days interval, which means, every 16 calendar day in a year, one NDVI value was generated 

and 23 values for the whole year. For the Ameriflux data, the daily records of GPP and global radiation (SWR) 

were summed in 16 days interval (the last data at the end of year is for 13 (common year) or (leap year) days). 

This processing was also conducted in Matlab R2013a software (MathWorks Inc.). Finally, we obtained 25 years 

data (575 records) for deciduous broadleaf forest, 23 years data (529 records) for evergreen needleleaf forest and 

9 years (207 records) data for mixed forest, which makes 57 years data (1311 records) in total. 
 

The imagery format was uniformed into Geotiff, and the map projection was Albers Conical Equal Area. Low 

quality data points within the sample window were eliminated. The rest of them were average to the value which 

can be further analyzed. All these processing accomplished in PCI Geomatica 2012 ( PCI Geomatics Inc.). 
 

2.4. Analytical Approach 
 

As indicated in the introduction part, we used the LUE model to analyze the potential of MODIS and AVHRR 

NDVI data sets for estimating GPP from Ameriflux forests sites. Equation 4, 5 and 6 listed below show those 

three predictors for the estimation: 
 

 
 

In addition, three statistical models: linear, quadratic and exponent function were used to establish the relationship 

between GPP and three predictors (NDVI, NDVI*NDVI and NDVI*NDVI*PAR).  
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Coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate model’s prediction 

power. First, we established the relationship for deciduous broadleaf forest, evergreen needleleaf forest and mixed 

forest separately. Then we generated the relationship for all sites in order to determine if there is any difference 

for various forest types. Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion 

(BIC) (Burnham & Anderson, 2004) were used to compare performance of predictor between different statistical 

models. 
 

 
 

k is the number of parameters used for the statistical model, n is the number of observation, and SSE is the 

residual sum of squares from that model. AIC deals with the trade-off between the goodness of fit of the model 

and the complexity of the model. It is founded on information entropy: it offers a relative estimate of the 

information lost when a given model is used to represent the process that generates the data (Akaike, 1974; 

Burnham & Anderson, 2004). Both BIC and AIC resolve this problem by introducing a penalty term for the 

number of parameters in the model. The BIC penalizes the number of parameters more strongly than does the AIC 

(Liddle, 2007). 
 

Moreover, one-way analysis of variance (ANOVA) was applied to examine the diversity between different 

models generated from deciduous broadleaf forest, evergreen needleleaf forest, mixed forest and all forest sites, in 

order to identify if there is one universal model for all types forests. All the analysis were conducted in the 

RStudio software, version 0.97.312 (RStudio.Inc.). 
 

3. Results and Discussion 
 

The fitting results are shown in Table 4. Linear function, quadratic function and exponent function are illustrated 

separately, with two different NDVI data sets, three different predictors for deciduous broadleaf forest, evergreen 

needleleaf forest, mixed forest and all forest sites. 
 

3.1. Comparison between MODIS and AVHRR NDVI Data Sets 
 

Although both MODIS and AVHRR NDVI datasets have the significant power of GPP estimation (Table 4), for 

all three statistical models and three predictors, the NDVI data from MODIS (MOD13A1) shows better 

performance than AVHRR data (GIMMS), with higher R
2
 and lower RMSE, except for mixed forest with NDVI 

or NDVI*NDVI as predictor in linear function model, which the GIMMS data has better performance than 

MODIS data. However, both data sets have significant relation between the selected predictor and GPP. The R2 is 

0.73 of MODIS NDVI, while 0.60 for GIMMS NDVI for all types of forests, taking NAVI*NDVI*PAR as 

predictor. However, the difference between models and predictors are not distinct, which will be discussed in 

following sections. 
 

Three major aspects are concerned for global or regional satellite remote sensing NDVI data set: spatial/temporal 

resolution, atmospheric/BRDF (Bidirectional reflectance distribution function) correction effect and obit 

coherence. 
 

The GIMMS data used here only has 8-kilometers spatial (Table 2) resolution, which introduces mixing pixel 

(Hsieh, Lee, & Chen, 2001), and it can largely disturb the calculation of NDVI value for the point in central with 

corresponding flux tower. While MOD13A1 has 500 meters resolution which can provide more detail and 

represent spatial variation for the same area. As NDVI is a ratio of differences between two adjacent bands 

(Equation 3), it is largely insensitive to variations in illumination intensity. However, NDVI is sensitive to effects 

that differ between bands. The GIMMS data set is generated with NOAA7, 9, 11, 14, 16 and 17 from 1981 to 

2006. Band calibrations changed frequently between the five NOAA AVHRR instruments that acquired the NDVI 

record, which caused the spectral response inconsistent problem (Trishchenko, 2009). Even in the mission 

duration period for one satellite, it would face the issue of spectral degradation (Wang et al., 2012). Those 

problems related to spectral response reduce the accuracy for GIMMS NDVI dataset. 
 

In addition, natural variability in atmospheric aerosols and column water vapor have affected the NDVI record. 

Aerosols, along with smoke from biomass burning and dust from soil erosion and other  
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Table 4: Regression Results for Sites’ Based 238 GPP And NDVI. Taking NDVI, NDVI*NDVI, and 

NDVI*NDVI*PAR as Predictor, Linear Function. (‘**’ Indicate P-Value<0.001, ‘*’ Indicate P Value<0.01). 

DF: Deciduous Broadleaf Forest, EF: Evergreen Needleleaf Forest, MF: Mixed Forest, all: all Forest Types 
 

 
 

Table 4: Regression Results for Sites’ Based GPP and NDVI, Continued, Quadratic Function 
 

 
 

Table 4: Regression Results for Sites’ Based GPP and NDVI, Continued, Exponent Function 
 

 
 

factors, can introduce significant variability in the AVHRR NDVI record. These constituents have significantly 

different effects on AVHRR band 1 and 2. The GIMMS NDVI corrects for the known changes of the atmosphere 

from two volcanic eruptions (El Chichon in 1982 and Mt. Pinatubo in 1991), but reductions in the NDVI signal 

can still be seen over densely vegetated tropical land covers for limited time periods (Pinzon, Brown, & Tucker, 

2004). However, the MOD13A1 uses MOD09 product for input, which is the atmospheric corrected land surface 

reflectance.  
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Three major composite methods: bidirectional reflectance distribution function composite (BRDF-C), 

constrained-view angle-maximum value composite (CV-MVC) and  maximum value composite (MVC) are 

applied to generate MOD13A1 (A Huete et al., 2002; Alfredo Huete et al., 1999). It ensures the high accuracy for 

MODIS NDVI dataset.  
 

Furthermore, the AVHRR sensor has the orbit drifting problem caused by the change in solar zenith angle (SZA). 

And it affects the determination of solar-observation geometry, which leads to the difficulty for BRDF correction 

of land surface target (Kaufmann et al., 2000). While the MODIS sensor does not have that problem and has a 

coherent orbit. All these reasons make the MODIS NDVI data set outperform AVHRR data set. However, it has 

the global record only from 1999. Therefore, several studies has tried to compare different NDVI dataset , and 

they provided the chance of calibration different NDVI data sets for global biology monitoring for long time 

period. 
 

3.2. Assessment for Different Predictors 
 

We took three predictors, including NDVI, NDVI*NDVI and NDVI*NDVI*PAR for estimation of GPP. Though 

all of them can be used to generate significant regression functions with GPP for selected statistical models, the 

general trend for these three predictors shows that NDVI*NDVI*PAR has the best performance with higher R
2
 

and lower RMSE (Table 4). Which gets the NDVI*NDVI has the second best power for GPP estimation while the 

NDVI has the relatively weaker power. 
 

As mentioned in the introduction part, the NDVI is a proxy for vegetation canopy physical and physiological 

parameters, such as fAPAR , LAI, chlorophyll content and so on. Moreover, PAR is with great spatial and 

temporal variation. Thus, Sims et al. explored using the temperature and greenness (TG) model to estimate GPP, 

based on the enhanced vegetation index (EVI) and the land surface temperature (LST) (Sims et al., 2008). LST is 

considered to have inner correlation with both vapor pressure deficit (VPD) and PAR. Combination of EVI and 

LST in the model substantially improved the correlation between the predicted and measured GPP at flux towers 

in a wide range of vegetation types across North America and provided substantially better predictions of GPP 

than the MODIS GPP product (Sims et al., 2006). Wu et al. proposed a new vegetation index (VI) model for GPP 

estimation, which incorporated vegetation indices for both LUE and fAPAR estimation land at first, and expanded 

to forest later, which got reasonable results. 
 

These previous studies suggested that vegetation indices can be used as proxies for GPP estimation while PAR 

also plays an important role in the LUE model (Equation 1), which controls the component for incoming solar 

radiation. Therefore, it explains the reason why the NDVI*NDVI*PAR is the best predictor in our research. 

However, there is a lack of remote sensing based global PAR product, especially for fine resolution and high 

temporal resolution of long time period (Pinker & Laszlo, 1992 X. Zhao et al., 2013), which limited the expansion 

for LUE model globally. Based on our study, GPP can be estimated by correlating in situ GPP with NDVI and 

this method worked well in some other studies. Gitelson maize from Landsat data with R (WDRVI) (Anatoly A 

Gitelson et al., 2008.  Wu et al. tested this approach by comparing NDVI, EVI, WDRVI and SAVI (soil adjust 

vegetation index) for MODIS data and found out that the EVI had best correlation with GPP (C. Wu, Niu, et al., 

2010 to explore the relationship between GPP and VI in the paper, since GIMMS only provides NDVI data. 

However, the result is still reasonable by statistical models, which indicates only taking NDVI from MODIS and 

GIMMS  datasets can be applied to GPP estimation. With 25 years duration of GIMMS dataset, and hopefully 

extended to the future, it is beneficial for long time period GPP estimation. 
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Figure 2: Regression lines of GPP vs. NDVI*NDVI*PAR for DF, EF, MF and All forest for MODIS 

(MOD13A1) and AVHRR (GIMMS) Data Sets 
 

 
 

3.3. Comparison between three Statistical Models 
 

Linear, quadratic and exponent function were used to establish the relationship between GPP and NDVI in this 

study. Table 4 shows that for both MODIS and GIMMS data sets, the exponent function has the lowest AIC 

(12735 for MODIS and 12809 for GIMMS) and BIC (12770 for MODIS and 12986 for GIMMS), taking NDVI as 

predictor, which suggests that it has better performance in this situation. The quadratic function has lower AIC 

(12636 for MODIS and 13141 for GIMMS) and BIC (12657 for MODIS and 13162 for GIMMS) than exponent 

function for two data sets, taking NDVI*NDVI*PAR as predictor. However, differences between quadratic and 

linear function in AIC and BIC are not so obvious, so as the R
2
 and RMSE. It indicates that both linear function 

and quadratic function have the power to generate the relationship between GPP and NDVI*NDVI*PAR. For 

NDVI*NDVI, the quadratic function has lower AIC (12710) and BIC (12730) for MODIS data set, while the 

exponent has lower AIC (13287) and BIC (13320) for GIMMS data set. But differences in R
2
 and RMSE is still 

not distinct. 
 

Nonlinear relationship is found out between single vegetation index and GPP for many vegetation types, and the 

exponent function is widely used to describe this relationship, which explains why it is better than other functions 

in this study, taking only NDVI as predictor. In previous study, it is also proved that the VI*VI*PAR has linear 

relationship with in situ GPP (Anatoly A Gitelson et al., 2008; Anatoly A. Gitelson et al., 2006; C. Wu, Niu, et al., 

2010). Wu et al. suggested that this combination can introduce more errors for GPP estimation, since the noise 

behind vegetation index has been amplified, especially for the vegetation index data set with obvious background 

noise (C. Wu, Munger, Niu, & Kuang, 2010; C. Wu, Niu, et al., 2010). In this study, the evergreen forest sites 

have more discretization (Figure 2), which gets lower R
2
 and higher RMSE. Meanwhile, as PAR is an important 

component for GPP estimation, and the form of NDVI*NDVI takes LUE and fAPAR into the consideration. This 

combination leads to the predictor: NDVI*NDVI*PAR, which decreases the fitting power of exponent function 

suitable for single VI, and increases the fitting power for linear function slightly. However, the linear function is 

thought to have universal explanatory power because it only needs two parameters. The results for the linear 

fitting between GPP and NDVI*NDVI*PAR for two data sets are shown in Figure 2. 
 

3.4. Comparison between Different Forest Types 
 

Both deciduous broadleaf forest (DF) and mixed forest (MF) have better regression accuracy than evergreen 

needleleaf forest (EF) for all predictors and all three statistical models (Table 4). 
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Figure 2 also shows that the discreteness between NDVI*NDVI*PAR and GPP for EF is obviously larger than 

DF and MF. 
 

Figure 3: Annual NDVI Variation and Standard Deviation for Nearby Pixels of Cary Site (US-SP1) 
 

 
 

We checked the original NDVI series for six selected evergreen needleleaf forest sites and figured out that the 

Austin Cary site (US-SP1) has the abnormal discreteness situation (Figure 3). 
 

The location for this site is at 29.7381N, 82.2188W, Florida, which falls into the subtropical zones, with dry mild 

winters (November- March), warm dry springs (April and May), warm humid summers (June-October), with 52% 

of total precipitation falling during the summer months (Gholz et al., 1991). The annual average NDVI is larger 

than 0.65, except for several outliers. It makes small seasonal change for this site. 
 

From the standard derivation derived for the nearby area where we made a subset, it shows that the NDVI has 

obvious fluctuation and it disturbs the regression between GPP and NDVI data. This result is consistent with 

previous studies. Hashimoto et al. explored simple algorithms for estimating GPP in forest areas from satellite 

data and figured out that the evergreen forest has poorer regression accuracy than deciduous forest, while tropical 

forest has the poorer regression accuracy compared with non-tropical forest reason (Hashimoto et al., 2012). The 

reason is that there is small seasonal changes observed in evergreen and tropical forest leaves, which are smaller 

than the inter annual variation in leaf phenology (AR Huete et al., 2008). Furthermore, the problem of saturation 

of NDVI has been disclosed by other researches (Gutman & Ignatov, 1998; A. R. Huete, Liu, & van Leeuwen, 

1997). It shows that the NDVI is not sensitive to spectral signal due to high density vegetation cover after a 

certain threshold. That also limits the application for GPP estimation by NDVI in high density vegetation covered 

area. 

 

. 
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Table 5: ANOVA Test Results for Models between all Types Forest and DF, EF, MF, with Corresponding 

Predictor of Linear, Quadratic and Exponent Function for MODIS (MOD13A1) and AVHRR (GIMMS) 

Data Sets 
 

 
 

Another issue related to GPP estimation for different forest types is the variance in model specification. The 

MODIS GPP product which based on the Biome-BGC model (Running et al., 2000; Turner et al., 2006) uses 

lookup table to deal with this issue. The deciduous forest and evergreen forest use two sets of parameters in this 

model, which indicates those two types of forest have different photosynthesis feature and carbon fixation ability. 

We used one-way analysis of variance (ANOVA) to test the significant of difference between different models 

(linear, quadratic and exponential) generated from DF, EF, MF and all forest types. The results are shown in 

Table 5. With 95% confidence, except for exponent model taking NDVI and NDVI*NDVI as predictors from 

MODIS dataset, there are significant differences in GPP estimation models for these three forest types.  
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However, the difference between MF and all forest types is not significant, which suggests that different forest 

types require different sets of parameters for GPP estimation and the MF has better coherence with all forest 

types. Taking NDVI*NDVI*PAR as predictor, there is no significant difference between different forest types in 

three models for MODIS dataset, except for evergreen forest and mixed forest of quadratic model (p=0 and 

p=0.008), and mixed forest of exponential model (p=0.0404). As for GIMMS dataset, significant difference is 

between different forest types and all forest data, except for mixed forest from linear and exponential model, 

deciduous forest and evergreen forest from quadratic model. That indicated the NDVI*NDVI*PAR has better 

performance of uniforming parameters for GPP estimation in different forest types. Wu et al. also figured out the 

difference of GPP estimation for deciduous forest sites and evergreen forest sites and developed a 

parameterization method, using dEVI and LST for different vegetation types (C. Wu et al., 2014; C. Y. Wu & 

Niu, 2012). In this study, we explored the potential for using one set of parameters to estimate GPP for different 

forest types. The NDVI*NDVI*PAR has the potential to uniform parameters for GPP estimations, while 

exceptions happens as model selection varies, suggesting that it needs cautious consideration for both model and 

predictor selection. 
 

4. Conclusions 
 

We investigated the potential of MODIS and AVHRR NDVI datasets for gross primary productivity estimation 

for three different forest types, over the continental U.S. The results show that both MODIS data set (MOD13A1) 

and AVHRR data set (GIMMS) have the ability to estimate GPP for selected forests sites. Due to data quality and 

spatial resolution issues, the MOD13A1 data has better overall performance than the GIMMS data. Furthermore, 

the estimation accuracy varies with different predictors. Taking photosynthetically active radiation (PAR) into 

account, the predictor of NDVI*NDVI*PAR has the best power for GPP estimation. The predictor of NDVI and 

NDVI*NDVI also have reasonable estimation ability for GPP. However, the three factor multiple form may 

introduce uncertainty because of noise in NDVI data set. Very few improvement has been detected for quadratic 

function and exponent function, compared with linear function. It indicates that the linear function is qualified for 

generating the relationship between GPP and NDVI data, especially for the predictor of NDVI*NDVI*PAR. 

Obvious difference is found between broadleaf forest, evergreen needleleaf forest and mixed forest sites, 

indicating that the carbon fixation feature for different types forest varies, while the predictor of 

NDVI*NDVI*PAR has the potential for uniforming parameters of GPP estimation. However, it needs cautious 

consideration for the regression model selection. 
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