
International Journal of Applied Science and Technology                                              Vol. 4, No. 5; October 2014 

92 

 
Parameter Estimation by ANFIS in Cases Where Outputs are Non-Symmetric 

Fuzzy Numbers 

 
Türkan Erbay Dalkiliç

 

Department of Statistics and Computer Sciences 

Faculty of Sciences 

Karadeniz Technical University 

Trabzon, Turkey 
 

Ayşen Apaydin 
Department of Statistics 

Faculty of Sciences 

Ankara University 

Ankara, Turkey 
 

 

 

Abstract 
 

Regression analysis is an area of statistics that deals with the investigation of the dependence of a variable upon 

one or more variables. Recently, much research has studied fuzzy estimation.  There are some approaches 

existing in the literature for the estimation of the fuzzy regression model. Two of them are frequently used in 

parameter estimation, one of which is proposed by Tanaka et al [21] and known as linear programming approach 

and the other is fuzzy least square approach [17]. The fuzzy inference system forms a useful computing 

framework based on the concepts of fuzzy set theory, fuzzy reasoning, and fuzzy if-then rules. The fuzzy inference 

system is a powerful function approximator. There are several different types of fuzzy inference systems developed 

for function approximation. The Adaptive-Network Based Fuzzy Inference System (ANFIS) is a neural network 

architecture that can solve any function approximation problem. In this study we will use the ANFIS for 

parameter estimation and propose an algorithm, in cases where outputs are non-symmetric fuzzy numbers. In this 

algorithm the error measure is defined as the difference between the estimated outputs which are obtained by 

adaptive networks and the target outputs. In order to obtain the difference between two fuzzy numbers, some fuzzy 

ranking methods must be used to define the operator {-}. There are many fuzzy ranking methods for the 

measuring of the difference between the two fuzzy numbers in literature. In this work, the method of Chang and 

Lee [2], which is based on the concept of overall existence, will be used. 
 

Keywords: ANFIS, OM index, Fuzzy Regression 
 

1. Introduction  
 

The fuzzy regression method can be used to obtain unknown parameters of regression models based on fuzzy 

data. This method has been introduced by Tanaka et al [21]. Several works have been published by different 

authors. In a study of Diamond [8] several models for simple least-squares fitting of fuzzy-valued data are 

developed and criteria are given for when fuzzy data sets can be fitted to the models. Ishibuchi and Nii [12] 

explained several versions of fuzzy regression methods based on linear fuzzy models with asymmetrical 

triangular fuzzy coefficients. In the paper of Kao and Chyu [17] the concept of least squares which is widely 

applied in the classical regression analysis is adopted to determine the regression coefficients. Hong and Hwang 

[11] extended Diamond’s models to multi variable cases and derived efficient solutions for fuzzy multivariable 

regression models. D’Urso [9] suggested fuzzy regression models with crisp or fuzzy inputs and crisp or fuzzy 

output. A method for hybrid fuzzy least-squares regression is developed. Xu and Li [23] developed a fuzzy 

analogue by a distance defined on a fuzzy number space, and proposed a fuzzy multivariable linear regression 

model. In a study of Chang and Lee [3] a generalized fuzzy weighted least-squares regression is proposed. 
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In classical regression analysis, it is assumed that the observations come from a single class in a data cluster and 

the simple functional relationship between the dependent and independent variables can be expressed using the 

general model;  ( )Y f X   . However; a data cluster may consist of a combination of observations that have 

different distributions derived from different clusters. When faced with issues of estimating a regression model 

for inputs that have been derived from different distributions, this regression model is termed as the ‘switching 

regression model’ and it is expressed with 
1

( ) ( )
p

L L L

i

i

Y f X L l


   . Here 
i

l  indicates the class number of 

each independent variable and p is the indicative of the number of independent variables [10,16,18,19]. To 

constitute this model, the first step is to determine class numbers related to independent variables. There are 

methods that suggest the class numbers of independent variables heuristically. In this study, in defining the 

optimal class number, the use of suggested validity criteria for fuzzy clustering has been applied. Different studies 

examining fuzzy clustering and validity criteria exist in literature. We will use the Xie-Beni index to determine 

the optimal class numbers. Optimal value of class numbers 
i

l , ( 2, 3,..., max)
i i i

l l l    can be obtained by 

minimizing the fuzzy clustering validity function
i

S . This function is proposed by Xie and Beni [22]. 
 

Neural network enabling the use of fuzzy inference system for fuzzy regression analysis is known as adaptive 

network.  There are many studies on the usage of the adaptive network to parameter the prediction for fuzzy 

regression model. Chang and Lee studied on fuzzy adaptive network approach for fuzzy regression analysis [6] 

and they studied on both fuzzy adaptive networks and switching regression model [5]. Jang, J. R. studied on the 

adaptive networks based on fuzzy inference system [16]. In 1985, in the study of Takagi and Sugeno, the method 

of identification of a system using its input-output data was shown [20]. James and Donalt, studied on fuzzy 

regression by neural network [15]. Erbay and Apaydın studied on parameter estimation in cases where 

independent variables come from exponential distribution by using fuzzy adaptive network [10].   
 

The fuzzy inference system forms a useful computing framework based on the concepts of fuzzy set theory, fuzzy 

reasoning, and fuzzy if-then rules. ANFIS is a neural network architecture that can solve any function 

approximation problem. In this study we will use the ANFIS for parameter estimation and propose an algorithm 

in case where outputs are non-symmetric fuzzy number. Since the outputs are non-symmetric fuzzy number in 

this study we will used the fuzzy ranking method. Comparison or ranking of fuzzy numbers is very important for 

practical applications. To measure the difference between two fuzzy numbers there are various fuzzy ranking 

methods based on different approaches or different points of view which have been proposed in literature.  

Several reviews have also appeared in [1]. In this work, the method of Chang and Lee [2], which is based on the 

concept of overall existence, will be used. 
 

The remainder of the paper is organized as follows. In Section 2, the difference between the non-symmetric fuzzy 

numbers is obtained by using an OM index for error measure. Section 3 introduces fuzzy linear regression 

analysis. The general information about fuzzy inference system and ANFIS are given in Section 4. In Section 5, 

which is the main part of this article, special ANFIS and an algorithm for parameter estimation by ANFIS in case 

where outputs are non-symmetric fuzzy number is given. A numerical example is given in Section 6. And finally 

a discussion and conclusion are provided in Section 7.    
 

2. Difference between the Non-Symmetric Fuzzy Numbers for Error Measure  
 

The error measure is defined as the difference between the estimated outputs which are obtained by adaptive 

network and the target outputs. In order to obtain the difference between the two fuzzy numbers, some fuzzy 

ranking method must be used to define the operator {-}. This is because fuzzy numbers are sets, not crisp 

numbers. There are many fuzzy ranking methods for measuring the difference between the two fuzzy numbers in 

literature. In this work, the method of Chang and Lee, which is based on the concept of overall existence, will be 

used. In order to use all the information available, all the existence levels w must be considered. When the A and 

B are two different fuzzy sets, this overall existence index can be defined as follows; 
1 1

1 1

0 0

({ ( )}) ({ ( )})A BI g w dw g w dw                                (1) 
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Here, 
 

,A B   : Membership functions of fuzzy sets A and B, 

1( )A w
, 

1( )B w
: Ordinary subsets, denoting the inverse images of the membership functions with 

  

 0,1w , i.e., 

1{ ( )} { : ( ) }A Aw x x w     , 

1{ ( )} { : ( ) }B Bw y y w     ,   ,x y, 
 

({.})g  is a function of the inverse of membership functions. In this state the difference between A and B fuzzy sets 

is defined as, 
1 1

1 1

0 0

( , ) ({ ( )}) ({ ( )})A A B Bd A B g w dw g w dw                                                                   (2) 

 

The special measure of each fuzzy set is defined as;  
 

1

1

0

( ) ({ ( )})i i AOM A g w dw                                           (3) 

Where,
1 ' ''

1 2({ ( )}) ( )[ ( ) ( ) ( ) ( )]A i iw W w w x w w x w      
 

When the left side of non-symmetric triangular fuzzy number A denoted as 
lA  and the right side is denoted as 

rA ; 

'( )x w  and ''( )x w  are the inverse images of the left reference and the right reference respectively, then 
 

' 1 '' 1( ) ( ) ( ) ( )
l rA Ax w w and x w w       

 

By these definitions, Eq. (3) now becomes 
1

1 1

1 2

0

( ) ( )[ ( ) ( ) ( ) ( )]
l rA AOM A W w w w w w dw                                                                 (4) 

 

Where,
1 2( ) ( )w and w  , are the weighting measures and must be determined subjectively by the decision 

maker, and these measures ensure the following conditions, 
 

1 2( ) ( ) 1w w     and 1 2( ) , ( ) (0,1]w w    . 
 

and weight ( )W w  is expressed by [2], 

 * 21
2

( )
( )hgt

W w
w

w
                                                              (5) 

 

For simplicity, when the weighting measures are 1 2( ) ( ) 1/ 2 ( ) 1w w and W w    , the membership 

function of the triangular fuzzy number A is the definition by, 
 

0 , ( )

( )
, ( )

( )
( )

( )
,

( )

0 ,

A

x a

x a
a x a

a a
x

a x
a x a

a a

x a


























 

 
  

 


 
  

 

 

                                                         (6) 
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For the determination of an overall existence measurement of a non-symmetric triangular fuzzy number 

( , , )A a   , which is given in Figure 1, the inverse images of the membership function is determinate by using 

the Eq. (6) as follows,  
 

'

''

( )

( )

x a
w x w a

a x
w x a w


 




 



 
    

 
    

                                                (7) 

 

And the values of the inverse images which are obtained from the Eq. (7) are placed into the Eq. (4) then the 

index OM of non-symmetric triangular fuzzy number A is 
    

   
1

0

1 1
( ) 1

2 2
OM A w a a w dw   

 
      

 
                                    (8) 

 

And from the solution of this integral the index OM of A is  

(4 )
( )

4

a
OM A

  
                                        (9)   

               

          1 

 

 

 

                                

 

 

 

                                                       

       0   a                 a                                  a   

  

          Figure 1: ( , , )A a    Non-Symmetric Triangular Fuzzy Number 

 

When the A and B are non-symmetric fuzzy numbers, which are defined by ( , , )A a    and ( , , )B b   , 

from the Eq. (2),(3) and (9) the difference between A and B is defined by 
 

1 1

1 1

0 0

( , ) ({ ( )}) ({ ( )})A A B Bd A B g w dw g w dw                       

             ( ) ( )OM A OM B          

            
(4 ) (4 )

4 4

a b      
    

  
( )

( )
4

a b
     

                                                             (10) 

 

3. Fuzzy Linear Regression Analysis Where the Dependent Variable is Fuzzy 
 

Regression analysis is an area of statistics that deals with the investigation of the dependence of a variable upon 

one or more variables. The aim of the regression analysis is to estimate the unknown parameters of the model 

which is given by the relationship between the dependent and independent variables. Recently, much research has 

studied the fuzzy estimation.  There are some approach exist in the literature for the estimation of the fuzzy 

regression model.  
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Two of them are frequently used in parameter estimation, one of which is proposed by Tanaka et al [21]. and 

known as linear programming approach and the other is fuzzy least square approach. When the 

),...,( 1 pnpp xxX   is an n-dimensional non-fuzzy input and pY

 

is the corresponding fuzzy output         
 

The linear multivariate hybrid model relates the dependent variable to two or more independent variables as 

follows  
 

0 0, 0, 1 1, 1, 1 2 2, 2, 2 , ,

ˆ
( , , ) ( , , ) ( , , ) ... ( , , )

l r l r l r p p l p r p
Y a c c a c c X a c c X a c c X                                             (11) 

 

Where p is the number of the independent variables,  
, ,

( , , )
p p l p r

a c c  is the p
th 

fuzzy slope coefficient, and 

0 0, 0,
( , , )

l r
a c c  is the fuzzy intercept coefficient [4].  

 

For a set of data (
1, 2, , , ,

( , ,..., : ( , , ), 1,..., )
i i p i i i l i r

X X X Y e e i n ) the normal equations for the fuzzy centers are as 

follows; 
 

0 1, 1 2, 2 ,

1 1 1 1

2

1, 0 1, 1 1, 2, 2 1, , 1,

1 1 1 1 1

, 0 , 1,

1 1

... ,

... ,

n n n n

i i p i p i

i i i i

n n n n n

i i i i i p i p i i

i i i i i

n n

p i p i i

i i

na X a X a X a Y

X a X a X X a X X a X Y

X a X X

   

    

 

     
         
     

       
           

       

  
 

 

   

    

  2

1 , 2, 2 , ,

1 1 1

... .
n n n

p i i p i p p i i

i i i

a X X a X a X Y
  

    
        

     
  

               (12)      

 

 

The normal equations for the left spreads and right spreads are similar and the normal equations for the fuzzy 

centers can be found in [4].  
 

4. Fuzzy Inference Systems and ANFIS Architecture 
 

4.1. Fuzzy Inference Systems 
 

The fuzzy inference system forms a useful computing framework based on the concepts of the fuzzy set theory, 

fuzzy reasoning, and fuzzy if-then rules. The fuzzy inference system is a powerful function approximater. The 

basic structure of a fuzzy inference system consists of three conceptual components; a rule base, which contains a 

selection of the fuzzy rules, a database, which defines the membership functions used in the fuzzy rules, and a 

reasoning mechanism, which performs the inference procedure upon the rules to derive a reasonable output. There 

are several different types of fuzzy inference systems developed for the function approximation. In this study, the 

Sugeno fuzzy inference system, which was proposed by Takagi and Sugeno [20], will be used. When the input 

vector X is
1 2( , ,..., )T

px x x , then the system output Y can be determinated by the Sugeno inference system as 

 

LR = If; (
1 1

Lx F  and 
2 2

Lx F  and ... L

p px F )  
        

Then; 
0 1 1 ...L L L L

p pY Y c c x c x                    (13) 

 

Where L

iF  is a fuzzy set associated with the input 
jx  in the L

th
 rule, LY  is output due to rule LR . The parameters 

used to define the membership functions for L

iF  is called as the premise parameters, and L

ic  are called as the 

consequence parameters. For a real-valued input vector 
1 2( , ,..., )T

pX x x x , the overall output of the Sugeno 

fuzzy inference systems a weighted average of the LY . 

 

 



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com  

97 

 








m

L

L

m

L

LL

w

Yw

Y

1

1ˆ                                                                       (14) 

Where the weight Lw  is the true value of the proposition 
LY Y   and is defined as 

 



p

i

jF

L xw L
i

1

                                                         (15) 

Where  ( )L
i

jF
x   is a membership function defined on the fuzzy set L

iF . 

 

4.2. ANFIS Architecture 
 

Neural networks enabling the use of fuzzy inference system for prediction is known as the adaptive network. The 

ANFIS is a neural network architecture that can solve any function approximation problem. An adaptive network 

is a multilayer feed forward network in which each node performs a particular function on the incoming signals as 

well as the set of parameters pertaining to this node and it has five layers [12-14]. The formulas for the node 

functions may vary from node to node and the choice of each node function depends on the overall input-output 

function which the adaptive network is required to be carried out.   
 

The fuzzy rule number of the system depends on the numbers of the independent variables and fuzzy sets 

numbers forming the independent variables. When an independent variable number is indicated with p, if the level 

number belonging to each variable is indicated with ( 1,..., )il i p  the fuzzy rule number is indicated with 





p

i

ilL
1

                                                                             (16) 

 

To illustrate how a fuzzy inference system can be represented by ANFIS, let us consider the following example. 

Suppose a data set has a two-dimensional input 
1 2( , )X x x . For the input 

1x , there are two fuzzy sets “C11” 

and “C12” and for the input 
2x , two fuzzy set “C21” and “C22”. In this case a fuzzy inference system contains 

the following four rules: 
 

).(),2212(:

),(),2112(:

),(),2211(:

),(),2111(:

2

4

21

4

1

4

0

4

21

4

2

3

21

3

1

3

0

3

21

3

2

2

21

2

1

2

0

2

21

2

2

1

21

1

1

1

0

1

21

1

xcxccYthenCisxandCisxifR

xcxccYthenCisxandCisxifR

xcxccYthenCisxandCisxifR

xcxccYthenCisxandCisxifR









                  (17)

 

 

This fuzzy system is represented by the ANFIS as shown in Figure 2.  
 

                      
               Figure 2: The ANFIS Architecture 
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2Ŷ  

3Ŷ
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The functions of each node in Figure 2 are defined as follows,  
 

Layer 1: The output of node h in this layer is defined by the membership function on 
hF   

4,3),(

2,1),(

2,1

1,1





hforxf

hforxf

h

h

Fh

Fh



                                           (18) 

 

Where the fuzzy cluster related to the fuzzy rules are indicated with 
1 2, ,..., hF F F  and 

hF  is the membership 

function relates to 
hF . Different membership functions can be defined for

hF . In this example, the Gaussian 

membership function will be used whose parameters can be represented by  ,h h   

4,3exp)(

2,1exp)(

2

2

2

2

1

1























 
























 


hfor
x

x

hfor
x

x

h

h

F

h

h

F

h

h











                                                     (19)

     

 

The parameter set  ,h h   in this layer is referred to as the premise parameters.  
 

Layer 2: Each nerve in the second layer has input signals coming from the first layer and they are defined as the 

multiplication of these input signals. This multiplied output forms the firing strength Lw  for rule L: 
 

).()(

),()(

),()(

),()(

21

4

4,2

21

3

3,2

21

2

2,2

21

1

1,2

42

32

41

31

xxwf

xxwf

xxwf

xxwf

FF

FF

FF

FF

















                                                                                       (20)

                   

 

Layer 3: The output of this layer is a normalization of the outputs of the second layer and nerve function is 

defined as 

4,...,1
4

1

,3 




L

w

w
wf

L

L

L
L

L                                          (21)

  

 

 Layer 4: The output signals of the fourth layer are also connected to a function and this function is indicated with  
L

L Ywf ,4                                                                         (22) 
 

Where, 
LY  stands for the conclusion part of the fuzzy if-then rule and it is indicated with  

22110 xcxccY LLLL                                                                         (23) 

Where L

ic  are the fuzzy numbers and stands for the posteriori parameters.  
 

Layer 5: There is only one node which computes the overall output as the summation of all the incoming signals 

[3, 6] 

 



4

1

1,5
ˆ

L

LLYwYf                           (24)                                       

                          

 

5. Parameter Estimation by ANFIS in case where Outputs are Non-Symmetric Triangular Fuzzy 

Number 
 

In forming a switching regression model, one of the most important points is that it necessary to determine how 

many cluster of independent variables there are. 
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In parameter estimation studies conducted via the adaptive networks, the class numbers of the data sets related to 

independent variables are determined intuitively initially. In this study we used the validity criterion to determine 

the optimal class number.  
 

The adaptive network used to predict the unknown parameters of the regression model is based on the fuzzy if-

then rules and fuzzy inference system which are defined in Section 4.1.  Neurons, which form the networks, are 

characterized with parameter functions. Functional relationships between the dependent and independent variables 

in the process of the adaptive networks are modeled and estimated based on the models.      
 

The aim of the fuzzy adaptive network is to obtain the model of the relationship between the input-output data 

couples. The process of determining the parameters for a regression model begins by determining the class 

numbers of the independent variables and priori parameters. The priori parameters are the characterizing class 

from which the data are derived. The parameter set  hhv ,  is referred to as the premise parameters. After that, 

the posteriori parameters associated with the regression model is determined. The updating of the posteriori 

parameters to obtain the best regression model is based on the error measure. The difference between the outputs 

(prediction) obtained from the network and the output, which is targeted, is described as an error measure. In this 

study, since the outputs are non-symmetric fuzzy numbers the error measure which is described in Section 2 and 

given by the Eq. (10) is used.  
 

The algorithm of determining the switching regression model in cases where the outputs are non-symmetric fuzzy 

number, the following is proposed.  
 

Step 1: Optimal class numbers of independent variables are determined by using a validity function   

2

1 1

2

1

min

il n
m

ij i j

i j

i

i j
i j

v x
n

S
v v


 









                         (25) 

 

Note that .  is the usual Euclidean norm. In Eq. (25) 
ij

 is the fuzzy membership degree of belonging to i
th
 

cluster of j-observation and m>1 is the fuzziness index. When the lowest 
i

S  value is observed, class number (
i

l ) 

with the lowest 
i

S  value is defined as an optimal class number [22]. 
 

Step 2: A priori parameter set is determined. Spreading is determined intuitively according to the space in which 

the input variables gain value and to the class numbers of independent variables. Centre parameters are indicated 

by 

max( ) min( )
min( ) ( 1) 1,2,...,

( 1)

i i

i i

i

X X
v X i i p

l


   


                                                       (26) 

 

Step 3: Lw  weights are counted by using the Eq. (21) used to form matrix B to be used in counting posteriori 

parameter set.  
 

 Step 4: On the condition that dependent variable consists of non-symmetric fuzzy numbers, a posteriori 

parameter set is obtained as
, ,

( , , )L L L L

i i i l i r
c a c c . In this case, to determine posteriori parameter set, Eq. (27) is used  

 

 YBBBZ TT ~
)(

~ 1                                     (27)   
 

Here Y
~

,Z
~

 and B defined as  
  

  TnyyyY ~,...,~,~~
21                                          (28) 

 

Here ( , , )i i i iy y    
 

 
1 1 1 1 1 1 1 1 1

0 0, 0, 0 0, 0, 1 1, 1, 1 1, 1, , , , ,
[( , , ),..., ( , , ), ( , , ),..., ( , , ),..., ( , , ),..., ( , , )]m m m m m m m m m T

l r l r l r l r p p l p r p p l p r
Z a c c a c c a c c a c c a c c a c c     (29)         

 

and 
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                 (30) 

 

Step 5: By using a posteriori parameter set 
, ,

( , , )L L L L

i i i l i r
c a c c , the switching regression model indicated by 

0 0, 0, 1 1, 1, 1 , ,
( , , ) ( , , ) ... ( , , )L L L L L L L L L L

l r l r p p l p r p
Y a c c a c c X a c c X                          (31) 

 

And, the prediction values are obtained using 
 

1

ˆ
m

L L

L

Y w Y


                             (32) 

 

Step 6: Error related to the model is counted as 
 

2 2

1 1

1 1ˆ[ ( )] ( )
n n

i i i

i i

d y y e
n n


 

                             (33) 

 

In here  ( , , )
i i i i

y y    and ˆˆ ˆˆ( , , )
i i i i

y y   . Difference between these two non-symmetric fuzzy numbers is 

calculated by using the Eq. (12) such as 

ˆˆ( )ˆ ˆ( ) ( )
4

i i i i

i i i i i
e d y y y y

     
                                                      (34) 

 

If  , then posteriori parameter has been obtained as parameters of the regression models to be formed, the 

process is concluded. If   , then Step 7 begins.  
 

Here , is a law stable value determined by the decision maker. 
 

Step 7: Central priori parameters specified in Step l, are updated with  
 

'

i iv v t                                                                                                            (35) 
 

In a way that it increases from the lowest value to the highest and decreases from the highest value to the lowest. 

Here, t is the size of the step; 
 

max( ) min( )
1,..., 1,...,

ji jix x
t j n i p

a


   .                                  (36) 

And a is a stable value which is determinant of the size of the step and therefore iteration number. 
 

Step 8: Estimation for each priori parameter obtained by change and error criterion related to these predictions are 

counted. The lowest of the error criterion is defined. Priori parameters giving the lowest error specified, and 

prediction obtained via the models related to these parameters is taken as the output.  
 

In this work, it is considered that the dependent variable is consisting of non-symmetric fuzzy number. Using the 

program, which was coded in the MATLAB for proposed algorithm, the value of the prime parameters can 

change minimally, and the optimal value of the prime parameters can be selected by this program.     
 

6. Numerical Example 
 

The values related to the data set with one non-symmetric triangular fuzzy dependent variable and two crisp 

independent variables are displayed in Table 1. The data shown in Table 1, except i , are taken from Cheng and 

Lee (1999). The values of i  are assumed by the authors. The prediction values derived from the adaptive neural 

network (ANN), which are related to the data set and the errors these predictions, are displayed in Table 1. In 

addition, the predictions that are obtained with hybrid fuzzy least-squares regression (HFLS) and errors related to 

these predictions are also displayed in the same table.     
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Table 1: Data Set 
 

i 
 1ix  

2ix  ( , , )i i i iy y    
( )

ˆˆ ˆˆ( , , )i ANN i i iy y    ( )i ANNe  
( )

ˆˆ ˆˆ( , , )i HFLS i i iy y    ( )i HFLSe  

1 

2 

3 
4 

5 

6 
7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

6.8590 

7.2150 

3.1990 
0.2600 

5.5280 

3.5390 
9.4760 

5.9680 
7.5620 

5.1030 

2.8020 
2.8310 

8.2870 

5.4790 
0.4230 

6.1340 

8.9760 
2.3160 

0.0800 

2.9370 
5.4080 

6.5120 

3.5040 
9.3190 

6.8790 

6.7930 
8.3250 

0.5390 

1.5440 
9.2980 

9.6880 

0.6170 

2.8980 
9.1510 

7.1140 

2.7660 
8.4430 

9.4460 
2.6780 

3.3240 

6.1010 
6.4920 

6.0810 

2.9990 
0.8850 

2.8240 

1.1650 
7.1210 

2.1270 

1.3000 
1.3430 

6.0410 

5.5340 
1.5160 

2.9060 

0.1420 
2.4320 

8.2110 

6.9000 
2.5660 

(4.9920,  1.2480,  1.0480) 

(4.8490,  1.2120,  1.1120) 

(5.2560,  1.3140,  1.1140) 
(4.9940,  1.2480,  1.1480) 

(3.2750,  0.8190,  0.6190) 

(4.8370,  1.2090,  1.1090) 
(5.0420,  1.2600,  1.0600) 

(5.2760,  1.3190,  1.1190) 
(5.3840,  1.3460,  1.1460) 

(4.3790,  1.0950,  0.9950) 

(4.2080,  1.0520,  0.8520) 
(4.8870,  1.2220,  1.1220) 

(5.1670,  1.2920,  1.0920) 

(3.3820,  0.8450,  0.7450) 
(5.0330,  1.2580,  1.0580) 

(4.2730,  1.0680,  0.9680) 

(5.1600,  1.2900,  1.0900) 
(5.3100,  1.3280,  1.2280) 

(5.0360,  1.2590,  1.0590) 

(4.7550,  1.1890,  1.0890) 
(6.0470,  1.5120,  1.3120) 

(5.1630,  1.2910,  1.1910) 

(5.4090,  1.3520,  1.1520) 
(5.0750,  1.2690,  1.1690) 

(5.3180,  1.3300,  1.2300) 

(5.0350,  1.2590,  1.1590) 
(4.9040,  1.2260,  1.0260) 

(5.0120,  1.2530,  1.1530) 

(4.8630,  1.2160,  1.0160) 
(4.8260,  1.2070,  1.1070) 

(5.0013,  1.2482,  1.0481) 

(5.0725,  1.2121,  1.1121) 

(4.8163,  1.3142,  1.1141) 
(5.0853,  1.2482,  1.1482) 

(4.5576,  0.8190,  0.6191) 

(4.8146,  1.2091,  1.1091) 
(5.3053,  1.2602,  1.0601) 

(4.8535,  1.3192,  1.1191) 
(4.8789,  1.3462,  1.1461) 

(4.7154,  1.0951,  0.9951) 

(4.7613,  1.0521,  0.8521) 
(4.7728,  1.2222,  1.1221) 

(4.7066,  1.2922,  1.0921) 

(4.7530,  0.8450,  0.7451) 
(5.1236,  1.2582,  1.0581) 

(4.7869,  1.0681,  0.9681) 

(5.1253,  1.2902,  1.0901) 
(4.8611,  1.3282,  1.2282) 

(5.0002,  1.2592,  1.0591) 

(4.9882,  1.1891,  1.0891) 
(4.9527,  1.5122,  1.3122) 

(4.5277,  1.2912,  1.1912) 

(4.6763,  1.3522,  1.1522) 
(5.1261,  1.2692,  1.1692) 

(4.8076,  1.3302,  1.2302) 

(5.0952,  1.2592,  1.1592) 
(4.9659,  1.2262,  1.0261) 

(5.0513,  1.2532,  1.1532) 

(4.9238,  1.2161,  1.0161) 
(5.0410,  1.2071,  1.1071) 

 -0.0093 

 -0.2235 

  0.4397 
 -0.0913 

 -1.2827 

  0.0224 
 -0.2633 

  0.4225 
  0.5051 

 -0.3364 

 -0.5533 
  0.1142 

  0.4604 

 -1.3710 
 -0.0906 

 -0.5139 

  0.0347 
  0.4489 

  0.0358 

 -0.2332 
  1.0943 

  0.6354 

  0.7327 
 -0.0511 

  0.5104 

 -0.0602 
 -0.0619 

 -0.0393 

 -0.0608 
 -0.2150 

   ( 4.8535,  1.2076,  1.0447) 

    (4.9537,  1.2322,  1.0981) 

    (4.9132,  1.2256,  1.0855) 
    (4.8336,  1.2084,  1.0492) 

    (4.8763,  1.2144,  1.0601) 

    (4.9160,  1.2260,  1.0862) 
    (4.8772,  1.2113,  1.0515) 

    (4.8526,  1.2082,  1.0463) 
    (4.9326,  1.2266,  1.0859) 

    (4.9160,  1.2246,  1.0826) 

    (4.8767,  1.2169,  1.0666) 
    (4.8726,  1.2159,  1.0643) 

    (4.8983,  1.2175,  1.0657) 

    (4.9210,  1.2256,  1.0844) 
    (4.9243,  1.2308,  1.0979) 

    (4.9254,  1.2261,  1.0853) 

    (4.9546,  1.2309,  1.0945) 
    (4.8637,  1.2141,  1.0607) 

    (4.9094,  1.2274,  1.0906) 

    (4.9296,  1.2299,  1.0949) 
    (4.9388,  1.2300,  1.0942) 

    (4.8918,  1.2174,  1.0663) 

    (4.8856,  1.2185,  1.0698) 
    (4.9521,  1.2299,  1.0924) 

    (4.9275,  1.2259,  1.0847) 

    (4.9572,  1.2334,  1.1010) 
    (4.9383,  1.2274,  1.0872) 

    (4.8449,  1.2110,  1.0546) 

    (4.8631,  1.2146,  1.0622) 
    (4.9406,  1.2271,  1.0862) 

0.1293 

-0.0962 

0.3278 
0.1752 

-1.6127 

-0.0690 
0.1547 

0.4139 
0.4366 

-0.5265 

-0.6812 
0.0273 

0.2566 

-1.5287 
0.0919 

-0.6422 

0.1895 
0.4596 

0.1108 

-0.1658 
1.0922 

0.2839 

0.5105 
0.1323 

0.4009 

0.0859 
-0.0492 

0.1812 

-0.0120 
-0.1044 

 

ERROR ( ) 0.2638NN   
( ) 0.2925HFLS   

 

The unknown coefficients of the hybrid fuzzy least-squares regression can be obtained by following three sets of 

simultaneous equations which are derived from the Eq. (12).  
 

0 1 2

0 1 2

0 1 2

30 153.0950 130.8110 147.1470

153.0950 130.8110 616.4527 752.446

130.8110 616.4527 822.9631 638.6706

a a a

a a a

a a a

  

  

  

                       (37) 

 

0, 1, 2,

0, 1, 2,

0, 1, 2,

30 153.0950 130.8110 36.788

153.0950 130.8110 616.4527 188.1215

130.8110 616.4527 822.9631 159.6706

l l l

l l l

l l l

c c c

c c c

c c c

  

  

  

                                                          (38) 

 

0, 1, 2,

0, 1, 2,

0, 1, 2,

30 153.0950 130.8110 32.2880

153.0950 130.8110 616.4527 165.0179

130.8110 616.4527 822.9631 139.3060

r r r

r r r

r r r

c c c

c c c

c c c

  

  

  

                                                           (39) 

 

By solving the simultaneous equations sets (37),(38) and (39) we obtained respectively 
 

0 1 24.9323, 0.0039, 0.0109a a a     

0, 1, 2,1.2331, 0.0001, 0.00272l l lc c c     

0, 1, 2,1.1032, 0.00022, 0.00591r r rc c c      
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Therefore, a hybrid fuzzy least-square regression model is given by 
 

1 2

ˆ
(4.9323,1.2331,1.1032) (0.0039,0.0001, 0.0002) ( 0.0109, 0.0027, 0.0059)Y X X             (40) 

 

The differences between the target outputs and the predictions obtained from the hybrid fuzzy least-square 

regression model, located in Eq. (34), are given by 
( )i HFLSe  which are obtained from the Eq. (24) and the error 

value is calculated as 
( ) 0.2925HFLS   by using the Eq. (33).     

 

From the beginning step of the proposed algorithm, for every two independent variables the fuzzy class numbers 

are determined as l=2. The number of the fuzzy inference rules formed according to this indicated the fuzzy class 

numbers is defined as four by using the Eq. (16). 
 

The models that are obtained from the four fuzzy inference rules to non-symmetric triangular fuzzy output are 
 

1 1 2

2 1 2

3

ˆ
(5.1741, 1.2933, 1.1426) ( 0.0367, 0.0088,0.0383) ( 0.2175, 0.0555, 0.0598)

ˆ
(6.7164, 1.6913, 1.1692) (0.1271, 0.0311, 0.0490) ( 0.1093 0.0286, 0.0249)

ˆ
(5.4710, 1.3632, 1.0739) (0.0115, 0.00

Y X X

Y X X

Y

       

    

  1 2

4 1 2

33, 0.0109) (0.1200, 0.0302, 0.0244)

ˆ
( 2.4836, 0.6147, 0.7098) (0.4185, 0.1038,0.1238) (0.4082, 0.1022, 0.0630)

X X

Y X X



     

   (41) 

 

The differences between the target outputs and the predictions are given by 
( )i ANNe . The predictions are obtained 

from models in Eq. (41) which are obtained from proposed algorithm. These differences are also obtained from 

the Eq. (34) and the error value is calculated as 
( ) 0.2638ANN   by using the Eq. (33). Errors from both 

methods are shown in Figure 3. Figure 3-a. shows errors which are obtained from ANN and Figure 3-b. shows 

errors which are obtained from HFLS.  
 

             

Figure 3: Errors from ANN and HFSL 
 

7. Conclusion 
 

Different methodologies have been developed for the estimating of the fuzzy regression model. In this study it is 

considered that the dependent variable consists of non-symmetric fuzzy numbers. Since the target outputs and the 

prediction values are non-symmetric fuzzy number, we used the fuzzy ranking method to determinate the error 

measure. Through numerical examples, we realize that the proposed algorithm for fuzzy regression model based 

on fuzzy inference system derive the satisfying solutions. This algorithm works well for the data with non-

symmetric output. The prediction values obtained from the proposed algorithm are compared whit the prediction 

values obtained from the hybrid fuzzy least-squares regression method which is proposed by Chang (2001). Both 

methods are suitable for the prediction the multiple regression models in case the outputs are non-symmetric 

fuzzy numbers. According to the indicated error criterion, the errors related to the predictions that are obtained 

from the proposed algorithm are less than the errors obtained from the hybrid fuzzy least-squares regression 

method.         

0 10 20 30 40 50 60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

 a- Errors From ANN                        b- Errors From HFSL



© Center for Promoting Ideas, USA                                                                                                 www.ijastnet.com  

103 

 

8. References 
 

Barajas, M., Agard, B., Improved fuzzy ranking procedure for decision making in product design, International 

Journal of Production Research, 1,(2009) 1–21.     

Chang, P.T., Lee, E.S., Ranking of Fuzzy Sets Based on the Concept of Existence, Computer Math. Applic. 82, 

(1994) 1-21. 

Chang, P.T., Lee, E.S., A generalized fuzzy weighted least-squares regression, Fuzzy Sets and Systems, 82, 

(1996) 289-298. 

Chang, Y.H.O., Hybrid fuzzy least-square regression analysis and its reliability measures, Fuzzy Sets and 

Systems, 119,(2001) 225-246. 

Cheng, C.B., Lee, E.S., Switching Regression Analysis by Fuzzy Adaptive Network, Europen Journal of   

Operational Research 128, (2001) 647–668. 

Cheng, C.B., Lee, E.S., Applying Fuzzy Adaptive Network to Fuzzy Regression Analysis, An International 

Journal Computers & Mathematics With Applications 38, (1999)123–140.  

Cichocki, A., Unbehauen, R., Neural Networks for Optimization and Signal Processing, John Wiley&Sons, 522 p. 

(1993), New York.   

Diamond, P., Fuzzy least squares, Information Science, 46, (1988) 141-157 

D’Urso, P., Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output, Computational Statistics & 

Data Analysis, 42, (2003) 47-72. 

Erbay, D.T., Apaydın, A. A Fuzzy Adaptive Network Approach to Parameter Estimation in case Where 

Independent Variables Come From Exponential Distribution, Journal of Computational and Applied 

Mathematics, 233,(2009) 26-45. 

Hong, D.H., Hwang, C., Extended fuzzy regression model using regularization method, Information Science, 164, 

(2004) 31-46. 

Ishibuchi, H., Nii, M., Fuzzy Regression using Asymmetric Fuzzy Coefficients and Fuzzied Neural Networks, 

Fuzzy Sets and Systems, 119, (2001) 273–290.  

Ishibuchi, H., Tanaka, H., Fuzzy Regression Analysis Using Neural Networks, Fuzzy Sets and Systems 50, (1992) 

257-265.  

Ishibuchi, H., Tanaka, H., Okoda, H., An Architecture of Neural Networks with Interval Weights and Its 

Application to Fuzzy Regression Analysis, Fuzzy Sets and Systems 57, (1993) 27-39.  

James, P.D., Donalt, W., Fuzzy Regression by Fuzzy Number Neural Networks, Fuzzy Sets and Systems 112, 

(2000) 371-380.  

Jang, J.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transaction on Systems, Man and 

Cybernetics 23, (1993) 665-685. 

Kao, C., Chyu, C.L., Least-squares estimates in fuzzy regression analysis, European Journal of Operational 

Research, 148,(2003) 426-435. 

Michel M. Fuzzy Clustering and Switching Regression Models Using Ambiguity and Distance Rejects, Fuzzy 

Sets and Systems 122, (2001) 363-399. 

Richard E.Q. A New Approach to Estimating Switching Regressions, Journal of the American Statistical 

Association 67, (1972) 306-310.   

Takagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Application to Modeling and Control, IEEE Trans. 

on Systems, Man and Cybernetics, 15, (1985) 116-132.  

Tanaka, H., Uejima, S., Asai, K., Linear regression analysis with fuzzy model. IEEE Trans. Systems Man 

Cybernet, 12, (1982) 903-907. 

Xie, X.L.,and Beni, G. A Validity Measure for Fuzzy Clustering, IEEE Transactions on Pattern Analysis and 

Machine Intelligence 13, (1991) 841–847. 

Xu, R., Li, C., Multidimensional least-squares fitting with a fuzzy model, Fuzzy Sets and Systems, 119, (2001) 

215-223. 

 


