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Abstract 
 

In this paper time series methods are used to model two terrain profiles obtained by the US Army at the Aberdeen 

Proving Grounds, Maryland and the Yuma Test Facility, Arizona. One profile has nonstationary behavior but has 

a linear structure. We can model it quite well by using the uniformly modulated processes introduced by Priestley. 

The other profile is also nonstationary but has a nonlinear structure. We model it with 3 different methods: 

ARMA-GARCH, TAR and EMD methods of which the EMD method may not be familiar to most statisticians. 

They all seem to fit it well. We use the linear damage theory in mechanics to make a more appealing fitness check 

of the 3 methods. We believe the experience we gained in this study may provide some insight into other 

nonstationary and nonlinear time series model builders. 
 

1 Introduction 
 

To fit a non-stationary and non-linear time series model, based on an observed sample, is a very delicate task 

which requires not only the finding of a suitable method but also a deeper understanding of the data and the need 

of a diagnostic checking method in addition to the usual way of just looking at the auto-covariance function of the 

residues. In general, we may find several models which all fit the data reasonable well, but the question is whether 

we can select one which is the best in some sense. In this paper, we shall study these modeling problems by 

working with two sets of real data of terrain profiles and we shall also consider the fitness question in the study of 

the second set of data. We shall refer to the references [9], [11], [15], [18] and [19] for the basic non-stationary 

and non-linear models, and we would like also to mention the paper [20] for an in-depth discussion of the 

difficulty of non-linear modeling. In this paper we shall study two sets of data, collected from the US Army 

vehicle test courses. One set of data is collected from Belgian Block test track, at Aberdeen, Maryland, which is a 

man- made course constructed of bricks and is relatively stable (Fig.1). The data are of the form 

Xt, t=1, 2, ···,   11,000, 
 

Where t represents the distance from the starting point with each unit being 4 inches and Xt is the height of the 

terrain profile at t. The other set of data is from Perryman3 off road track, at Yuma, Arizona, which is a course 

that emulates the characteristics of travelling off road and is therefore very rough (Fig.1). The data are given in a 

Similar form 
 

Xt, t=1, 2, ···, 55,000. 
 

We are interested in finding computer models to simulate these terrain profiles. The simulated terrain profiles can 

then be used as input data to vehicle shakers in laboratories for testing the durability of vehicles or as input to 

computer analysis of vehicle dynamics. Another use of the simulated profiles is the study and quantification of the 

roughness of each test course. We decide to use statistical models to fit the data for the following reason. Every 

time we measure the terrain profiles we would get a different set of data due to the measuring errors and due to 

the fact that the linear tracks on which the measuring vehicle travels cannot be exactly the same each time. 

However the data collected from each course at different times should share similar intrinsic properties. Therefore 

each measured data profile is like a sample from a stochastic process.  
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In this paper we shall use time series models with time being the distance from the starting point. If a time series 

is linear, Gaussian and stationary, a well-studied autoregressive moving average (ARMA (p, q)) model can be 

used with proper orders p and q ([3]). For non-stationary data, one type of non-stationary time series which is 

structurally very close to a stationary process is called the uniformly modulated process ([15]). If the series is 

nonlinear, various ad hoc nonlinear methods must be considered. 

 
 

 
 

Figure 1: A Snake View of Belgian Block 

 
 

 
 

Figure 2: A Snake View of Perryman3 Terrain 
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We have used Keenan’s test for linearity ([12]), Kolmogorov-Smirnov’s test for Gaussianity and we tested for 

stationarity by comparing the mean and variance for different segment of the data. The study in [4] concludes that 

Belgian Block data is linear, Gaussian, but not stationary, and Perryman3 data are neither linear, nor Gaussian, 

nor stationary. The Belgian Block test track is much better-behaved than the Perryman3 off-track terrain.  

 

Based on the statistical test results for these two testing courses, we are proposing the following time series 

models for them respectively. In Section 2, a uniformly modulated process is used to model and to simulate the 

Belgian Block profile. In Section 3, three different non-linear models are proposed for the Perryman3 data profile: 

(1) ARMA-GARCH model, (2) TAR model, and (3) Empirical Mode Decomposition (EMD) method. They all 

seem to model the data well. In Section 4, we use the linear damage theory in fatigue mechanics and compare the 

rain flow cycles of the simulation results for these three nonlinear models in order to make a better selection. The 

EMD decomposition method is not well known among statisticians. We believe it may be of interest for further 

study in more details by people that are interested in time series. 
 

 

2 Modeling of Belgian Block Profile 
 

In [4], the Belgian Block profile is tested and found to be linear, Gaussian, but not stationary. To model and 

simulate a non-stationary time series, we propose to use the uniformly modulated process (UMP) ([15]). 

 
 

2.1 Uniformly Modulated Process (UMP) 
 

Let {Xt, t=0, ±1, ±2, •••} be a discrete parameter process. It is a uniformly modulated process if it is of the form  

Xt=c(t) X0,t 

where c(t) is a deterministic function and X0,t, is a stationary process, or its evolutionary spectral density functions 

ht(ω) is of the form  

ht (ω) =ct
2
 h(ω) 

 

where h(ω) is a spectral density function. When ht(ω) is independent of t or c(t) is a constant, then the time series 

is stationary. To test whether Xt is a uniformly modulated process, we follow the procedures given in Priestley’s 

book ([15]), pp174-183. 

 
 

2.2 UMP Modeling of Belgian Block Profile 
 

To illustrate the method, we only use a segment of the data Xt, t = 2001, 2002, · · ·, 4000 of 2000 points. We did 

not use the first 2000 points because we thought that the data at the beginning of the measurement may be 

subjected to more measurement errors. The Priestley test, applied to the above data, shows that the data come 

from a UMP. Following the procedures given in [15] we first estimate the values of the evolutionary spectrum at a 

few selected points and the Priestley test converts them into an ANOVA problem. Fig.3 is the ANOVA table the 

test results.  
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The column sum of squares (SS) is the variation over different frequencies, the row sum of squares (SS) is the 

variation over different time values and the error sum of squares (SS) is the sum of errors and interactions 

between the time and the frequency. From the table we can see that the interaction is very small and hence the 

data should come from a uniformly modulated process. Therefore, the process Xt t = 2001, 2002, · · ·, 3999, 4000 

can be written as 
 

                                                                    Xt =d(t) X0, t       (2.1) 
 

Where d(t) is a deterministic function of t and X0, t is a stationary time series. To obtain X0, t, we estimate the local 

variance of each point t to approximate d(t). To compute the variance at Xt at each t. For each t, we use 100 points 
 

x(t−50),x(t−49),···,x(t−1),x(t),x(t+1),···,x(t+49),x(t+50) 
 

centered at t, then our estimate ˆd(t)
2
 is the sample variance of X. We can then obtain X0, t by dividing Xt by d(t). 

The remaining work is to build a model for the stationary process X0,t. 

 

Since it is linear, Gaussian and stationary, X0, t can be fitted by an ARMA (p, q) model. We choose ARMA (9, 10) 

because it has the smallest AICC number ([1]). The estimation of the ARMA model is given in Table 3. 

 

                                                    

 
 

 
 

The ACF values of the residuals (Fig.4.c) show that the residuals are uncorrelated. This indicate that the residuals 

are i. i .d. noise. So the ARMA (9, 10) model fits X0, t very well. Then we can simulate X0, t by using the ARMA 

(9, 10) model. We denote the simulation of X0, t by ˆX0, t and ˆX0, t are given in Fig.4. The simulation of Xt, denoted 

by ˆ Xt, is the product of ˆX0, t and the local sample variance ˆd(t). Fig.5 shows part of the Belgian Block data Xt, (t 

= 2001, 2002, · · ·, 4000) and its simulation ˆXt . 

 
 

3. Modeling of Perryman3 Profile 
 

The Perryman3 off-track terrain is unpaved. It is a dirt road and so it is very rough. Its statistical properties are not 

as good as those of Belgian Block profile. In [4], the statistical tests have shown that the Perryman3 profile data is 

non-linear, non-Gaussian and non-stationary. To analyze a non-linear time series, ad hoc methods must be used. 

For the non-linear Perryman3 profile data, we shall apply three methods to model and simulate it. In section 3.1, 
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we describe briefly the ARMA-GARCH residuals method and give the modeling result. In section 3.2 the 

Threshold Autoregressive method is introduced and applied, and in section 3.3 we combine the Empirical Mode 

Decomposition method and the Threshold Autoregressive method to build a model for the Perryman3 profile. All 

the three methods can represent the data profile reasonably well. 
 
 

3.1 ARMA-GARCH Method and Modeling for Perryman3 Profile 
 

3.1.1 ARMA-GARCH Model 
 

The Autoregressive Conditional Heteroscedasticity (ARCH) model was first proposed by Engle in [8], and later 

Bollerslev proposed the Generalized ARCH model (GARCH) in [2]. A GARCH process ([18]) is defined by the 

following formulas, 
 

,    

 

 
 

We can see that a GARCH process is a process depending non-linearly on its noise. It has the property that large 

changes follow large changes and small changes follow small changes. This phenomenon is called conditional 

heteroscedasticity, which is also known as the GARCH effect. 
 

Before applying a GARCH model, we have to make sure whether there is a GARCH effect in the time series. 

Mcleod and Li in [14] proposed a formal test for the GARCH effect based on the Ljung-Box test. 
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They considered the autocorrelation function of the squares of the time series, and tested whether the first L 

autocorrelations for the squared residuals are collectively small in magnitude. For a fixed large enough L, the 

Ljung-Box Q-statistic of Mcleod-Li test is given by 

 
 

Where T is the sample size, and ˆr2 t is the squared sample autocorrelation of squared residual series at lag t. 

Under the null hypothesis of a linear generating mechanism of the data, i.e. no ARCH effect in the data, the test 

statistic is asymptotically χ
2 
(L) distributed. 

 

The ARMA-GARCH model may be interpreted as a combination of an ARMA model which is used to remove 

the linear dependence, and a GARCH model which is used to model the GARCH effect in the residual series from 

the ARMA model. The general ARMA (p, q) – GARCH (p′, q′) model has the following form 

 
,    
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3.1.2 ARMA-GARCH Modeling for Perryman3 Profile 
 

The time series plot of the nonlinear Perryman3 profile Xt, is given in Fig.6.a. From the graph of the Perryman3 

profile, we can see that there are some big bumps and big hollows. And a big bump is usually followed by a big 

hollow. So it appears that there is a GARCH effect in the Perryman3 profile. First, we choose an ARMA (4, 3) 

model with the smallest AIC to remove the linear component of the file and denote the fitted value by ut. Since 

the original Perryman3 profile data are nonlinear, the residuals of the linear ARMA (4, 3) model must also be 

nonlinear. Here we consider applying the GARCH model for the residuals. We first use the Mcleod-Li GARCH 

effect test for et, the residuals of the ARMA (4, 3) model, with the lag L = 1, 2, · · ·, 50. We find that all of the χ
2
 

test statistics values are much greater than the corresponding critical values in Table 4. Therefore, we can reject 

the null hypothesis. That is there is a GARCH effect in the residuals et. After some searching we decide to use 

GARCH (1, 1) model for et. The estimations of ARMA (4, 3) −GARCH (1, 1) model are given in Table 5, where 

αi, i = 1, 2, 3, 4 and βj, j = 1, 2, 3 are the coefficients of the ARMA (4, 3) model, φi, i = 0, 1 and η1 are the 

coefficients of GARCH (1, 1). The ACF and PACF of the residuals of GARCH (1, 1) model (Fig.6.c) show that 

the residuals are i. i. d. It confirms our belief that the ARMA (4, 3) – GARCH (1, 1) model can be used to fit the 

nonlinear and nonstationary Perryman3 profile. The simulation results are given in Fig.6. 
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3.2 Threshold Autoregressive Method and Modeling of Perryman3 Profile 
 

3.2.1 Threshold Autoregressive (TAR) Method 
 

The Threshold Autoregressive (TAR) model was first used by H. Tong [18]. This method models nonlinear 

processes based on a “piecewise” linear approximation via partitioning a state-space into several subspaces. And 

the stationarity and Gaussianity may be preserved in each subspace. A threshold autoregressive (TAR) model 

with k (k ≥ 2) regimes is defined as 
 

 
 

where et ∼ i. i. d.(0, 1), and d, p1, . . . , pk are some unknown positive integers, σi > 0, bi,j are unknown parameters, 

and {Ai} forms a partition of (−∞,∞) in the sense that ∪ i=1,..k Ai = (−∞, ∞) and Ai ∩ Aj = ∅  for all i ≠ j. Here I is 

the indicator function such that I(F) = 1 if the statement F is true and I(F) = 0 if F is false. The sets Ai represent 

the “thresholds”. 
 

Based on the observations, we estimate the parameters bi,j, σi, d and determine the order’s pi and the partition 

{Ai}. Since there are many unknown parameters to be determined in a TAR model, we first assume that the 

partition {Ai} and the orders pi are known. As usual, the delay parameter d is not too big. Here we choose d from 

the set {0, 1, 2, 3, 4, 5}. For each fixed d, we minimize the least squares estimator to obtain ˆbi,j. 
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And then we choose the best ˆd such that the sum of L(bi, d; Ai) is minimized. Finally, we determine the best 

autoregressive order pi by minimizing the generalized 
 

 

where  and  is the number of elements in the set . 

 
3.2.2 TAR Modeling for Perryman3 Profile 
 

The time plot of the Perryman3 profile (Fig.6.a) consists of a rather flat profile with a few bumps coming up 

intermittently. It is mostly those bumps which make the whole profile non-linear. In Fig.6.a, it seems that the 

bumps come up periodically, but looking carefully one can see that there is no fixed period between the bumps. 

So we cannot use any seasonal models for the Perryman3 profile data. To describe the bumps more precisely, we 

apply a TAR model for the Perryman3 profile. We model the flat part and bumps separately by autoregressive 

models and used a threshold to switch the process back and forth between the flat part and the bump part. So we 

partition the state-space into two regimes: bump part and flat part. 
 

To choose the best threshold for the bump, we use a set of thresholds as {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For each 

given threshold, we set p1, p2 ≤ 10 and 0 ≤ d ≤ 4. The AIC selected the following TAR model as the best TAR 

model for Perryman3 profile. That is the best threshold is 0.4 and the delay parameter d = 1 and the 

autoregressive orders p1 = 7, p2 = 6. The estimated TAR model is 

 
 

 
 

In this TAR model, if the process is in the flat part and we detect xt−1 > 0.4, then the process will be switched to 

the bump part from time t. Similarly if the process is in the bump part and we detect xt−1 ≤ 0.4, then the process 

will be switched to the flat part from time t. A simulation of the Perryman3 profile by TAR model is given in 

Fig.7. The ACF of the residuals in Fig.7.c shows that this TAR model fits the data. The simulation in Fig.7 tells us 

that this method models the bumps part reasonably well. 
 

 

3.3 Empirical Mode Decomposition Method and Modeling for Perrman3 Profile 
 

3.3.1 Empirical Mode Decomposition Method 
 

The Empirical Mode Decomposition (EMD) method was developed by Huang ([11]) for analyzing non-stationary 

and non-linear data. The EMD method decomposes the data into a collection of Intrinsic Mode Functions (IMF) 

and a residue. The essence of the method is to identify the intrinsic oscillatory modes by their characteristic time 

scales in the data empirically, and then decompose the data accordingly. This decomposition method will use the 

envelopes defined by the local maxima and local minima of the data profile Xt separately. Once the extrema are 

identified, all the local maxima are connected by a cubic spline line as the upper envelope. Repeating the 

procedure for the minima produces the lower envelope. The upper and lower envelopes should cover almost all 
the data between them. The mean of the upper and the lower envelopes is designated as m10, and the difference 

between the data Xt and the mean m10 is denoted by h10, i.e. 
 

                                                                             Xt −m10=h10                                                                          (3.1) 
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This is called a sifting process. The Fig.8 demonstrates the sifting process visually. Then taking h10 as new data 

and repeating the procedure, we get h11. We repeat this sifting process k times until h1k is an IMF. An intrinsic 

mode function (IMF) is defined as a function each of whose oscillations crosses the zero axis and the mean of 

whose upper and lower envelopes is zero. 
 

h10 -m11= h11 

h11 -m12= h12 

...  ...    ... 

h1 (k-1) -m1k= h1k                                                                        (3.2) 
 

Let C1 = h1k be the first IMF, then C1 should contain the finest scale or the shortest period component of the 

signal. We can separate C1 from the data by 
 

                      Xt − C1=r1                                                                         (3.3) 
 

Where r1 = m10 + m11 + m12 + · · · + m1k. Since the residuals r1 still contains information of longer period 

components, it is treated as the new data and subjected to the same sifting process as described above. This 

procedure can be repeated on all the subsequent rj , and the result is 
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Xt–C1=r1 

r1–C2=r2 

…. 
rn−1−Cn=rn                                                                        (3.4) 

 

This procedure can be stopped any time as the problem demands or by any of the following predetermined 
criteria; either when the component Cn or the residual rn becomes so small that it is less than a predetermined 

value of substantial consequence, or when the residual rn becomes a monotonic function from which no more 

IMF can be extracted. By summing up equations (3.4), we finally obtain 
 

                                                                                                                (3.5) 
 

Where Ci(t) is the ith IMF and rn(t) is residual after n decompositions.  
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As described above, the process is indeed like sifting: to separate the finest local mode from the data first based 

only on the characteristic time sale. The sifting process, however, has two effects: (a) to eliminate riding waves; 

and (b) to smooth uneven amplitudes. Therefore every oscillation of each IMF crosses the zero axis and the 

 

 
 
 

  
 

oscillations are all symmetric with respect to the zero axis. The first IMF C1(t) captures oscillations of {Xt} with 

the highest frequencies. The second IMF C2(t) captures oscillations with the second highest frequencies etc. The 

frequency ranges of the IMF’s C1(t), · · ·, Cn(t) are almost disjoint, hence they are practically uncorrelated. For a 

nonlinear and non-Gaussian data, the linearity and Gaussianity properties of the Ci(t)’s are, in general, getting 

worse as i increases. Hence, we have to stop at some n for which the Ci(t), i = 1, · · ·, n can still pass the linearity 

test. The residual rn(t) is non-linear and we have to use one of the methods described above to model it or just 

treat it as a deterministic function since it is much smoother than the original data. 

 

 

3.3.2 EMD Modeling of the Perryman3 Profile 
 

We apply the IMF sifting process to the Perryman3 data and we stop at n = 2. Then we have 
 

Xt=C1(t)+C2(t)+r2(t). 
 

Before we build a model for the three IMF components Ci(t), i = 1, 2 and the residuals r2(t), we first have to test 

their linearity, stationarity, and Gaussianity. The test results are given in Table 6, Table 7, and Table 8. We could 

find that the first IMF component C1(t) is non-linear, non-stationary, and non-Gaussian; the second IMF 

component C2(t) is non-stationary, but linear and Gaussian; the residuals r2(t) is non-linear, non-stationary, and 

non-Gaussian as well as C1(t). 
 

Table 9 shows that the correlation coefficients between the two IMF’s Ci(t), i = 1, 2 and the residuals r2(t) are all 

quite small. So they are uncorrelated. Hence we may add the models for the three components together as a model 

for the Perryman3 profile. 
 

We take ARMA-GARCH model for the first IMF component C1(t) which is non-linear, non-stationary, and non-

Gaussian. The coefficients and standard errors of the model are listed in the Table 10. 
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Fig.9 demonstrates the simulation result of ARMA (2, 4)-GARCH (1, 1) model. The ACF and PACF of the 

residuals (Fig.9) are all bounded in the 95% confidence interval. It means that the ARMA (2, 4)-GARCH (1, 1) 

model fits the first IMF component C1(t). Since the second IMF component C2(t) is non-stationary, linear and 

Gaussian which has the similar property with the Belgian Block profile, it is easy for us to take the UMP test for 

it. The ANOVA table in Fig.10 indicates that the interaction between frequency and time is very small, therefore, 

we take C2(t) as a uniformly modulated process (UMP). i.e. C2(t)=D(t) x0,t, where D(t) is a deterministic function 

of t and x0,t is a stationary time series. As what we did in Section 2.2 for Belgian Block profile, we apply 

ARMA(4, 5) model for x0,t. Table 11 lists the coefficients and the standard errors of the ARMA(4, 5) model for 

x0,t. The Fig.11 is the simulation result for C2(t) from a UMP model.  
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After building proper models for the two IMF components, we next need to create a model for the residuals r2(t). 

Although the residuals r2(t) is non-linear, nonstationary, and non-Gaussian as well as C1(t), the bumps are still 

there. But the residuals r2(t) are much smoother than the original Perryman3 profile because all the high 

frequencies oscillations are removed to the IMF components. We can consider a TAR model for r2(t). We have 

already found that the best threshold is 0.4 for the original Perryman profile in Section 4.2. Since the residuals 

have the same trend and bumps as the original Perryman profile, we also set the threshold as 0.4 for the residuals 

r2(t). The AIC shows that the best delay parameter d = 1. And the autoregressive order p1 = 5 in the low regime, p2 

= 7 in the high regime. The details of the TAR model are given below. 

 

 
 

Fig.12 shows the residuals and its simulation by the TAR model. The ACF of the residuals shows that the 

residuals of the TAR model are independent. It means that the TAR model fits r2(t) very well. Finally, Fig.13 

gives a simulation result for Perryman profile by the EMD method based on the simulations for the two IMF 

components C1(t), C2(t) and the residuals r2(t). 

 
 
 

4 A Criterion of Model Fitness from Damage Theory 
 

In the last section we have applied 3 different methods to model the same Perryman3 terrain profile. All the 3 

methods seem to model it well as judged by the autocorrelation functions of their residues. Therefore it compels 

us to find another criterion to differentiate the fitness of these models. In the following we are going to use the 

linear theory of damage and the idea of rain flow count to define a new criterion for this purpose. 
 

1) Linear Damage Theory for Material Failure due to Fatigue. Suppose we subject a piece of material specimen 

under repeated tension and compression stress cycles of the same amplitude S and the material starts to break 

down after N such tension and compression cycles. According to the experiments S and N have the following 

relation 
 

                                                                                    N ∗ (S
b

) = C, 
 

Where b and C are constants depending on the material. The relation is called an S-N curve (Fig.14). So for each 

S value there is a corresponding N value according to the S-N curve. 
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The linear damage rule (or Palmgren-Miner Rule, [6] or [5]) can be stated as the following: In an experiment with 

ni cycles of stress amplitude Si, i = 1, 2, · · ·, k, the total cumulative damage fraction done to the specimen is 
 

 
 

Where Ni is the number of cycles until fracture corresponding to Si from its S-N curve. The specimen has fatigue 

failure when D = 1. 

 
 

2) Rain flow Counts of Cycles. 
 

The graph on the left part of the Fig.15 represents a portion of a stress history. The question is what should be the 

amplitudes corresponding to the stress oscillations in that graph. The right part of the Fig.15 shows the 

corresponding stress-strain relation in a hysteresis loop curve. If you follow the stress history OABCDEFGHA’ in 

the left figure, the stress-strain history follows the hysteresis curve in the same order OABCDEFGHA’ in the 

right figure. One can see clearly in the hysteresis curve that there are exactly four and one-half cycles 

corresponding to the stress history in the left figure. They are cycles ADA’, BCB’, FGF’, EHE’ and a half cycle 

OA. This method of counting the stress cycles is called the rain flow count of cycles ([7]).  
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The name rain flow count comes from an idea as shown in the Fig.16, because it looks like rain flow from the side 

of a pagoda. In [16] Rychlik gave a mathematical definition of rain flow counts which we have used to write 

computer programs to do the counting of rain flow cycles and to compute the amplitudes for each history of stress 

oscillations. 
 

3) The Histogram of Rain flow Counts of Cycles of Different Amplitudes. Consider each terrain profile as a 

sequence of rain flow cycles of stress oscillations. According to the linear damage theory the cumulative damage 

caused by the terrain profile is characterized by its histogram of the rain flow cycles at different amplitudes in 

combination with a certain S-N curve. Thus, to determine which model fits better, we can just compare the rain 

flow cycle histogram of each model with that of the terrain profile. 
 

The simulation will change every time because of the random noise. To calculate the histogram stably and 

unbiasedly, we run the simulation 1000 times for each model and consider the average histogram of each model. 

Since the amplitude of most rain flow cycles is less than 0.1, we mainly focus on the comparison of the number of 

rain flow cycles with amplitude less than 0.1. Fig.17shows us that the histograms of the rain flow cycles of the 

simulation profiles and the original profile. We further figure out the number of rain flow cycles with amplitude 

less than 0.1 are 448, 453, 464 and 358 respectively for the original Perryman3 profile, the simulated profile by 

ARMA- GARCH model, the simulated profile by TAR model and the simulated profile by 
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EMD model. Though the numbers of rain flow cycles from the simulations of ARMA-GARCH and TAR models 

are closer to that of the original Perryman3 profile, the shape of the histogram of EMD simulation is more like 

that of the original Perryman3 profile. To compare the histograms better, we make the cubic spline interpolation 

for each histograms and get Fig.18. Then we find that the smoothed histogram curve of EMD model is almost the 

same as that of the original Perryman3 profile. Therefore using this damage criterion for model fit, EMD fits the 

original profile better than the TAR and ARMA-GARCH model. 
 

5 Conclusion 
 

After a new vehicle has been designed and manufactured, it and its various parts have to be tested on a testing 

track for durability due to fatigue from vibrations caused by driving along the track. However it is equally 

important to have computer models to simulate these test tracks so one can do an initial test of the vehicle on a 

vehicle tester or a shaker in a laboratory using the simulated tracks as input and, with this simulated track, one can 

also run computer based simulations of the vehicle during its designing stage. In this paper we have found a 

model (UMP) for the Belgium Block test track and 3 models (ARMA-GARCH, TAR, EMD) for the Perryman3 

off track terrain. All the 3 models seem to fit well by looking at the autocorrelation functions of their error 

residues. Since the goal of the driving test is to study material failure due to fatigue caused by vibrations, we 

propose another criterion for model fitness based on the 

 
 

Figure 18: Spline Interpolated Histograms of Rainflow Cycles of the Simulations for 

Perryman3 Profile linear damage theory. Using this criterion it seems that the EMD model fits the best. 
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